Notices
 

[NOTES/EM-02014] Flux --- Example of a point charge

For page specific messages
For page author info

The flux of the electric field of a point charge placed at the centre  of a sphere is explicitly computed and shown to be

\[\text{Flux} = \frac{q}{\epsilon_0 }\]


The expression for the electric field of a {\bf point charge} \(q\), located at \(\vec r_0\),
the electric field at \(\vec r\) is
\begin{equation}
 \vec E = \frac{q}{4\pi\epsilon_0}
 \frac{\vec r-\vec r_)}{|\vec r-\vec r_0|^3}
\end{equation}
We know that the flux expression for an infinitesimal surface element,\eqref{eq1}, is  equal to
 \[\text{Flux} = \frac{q}{4\pi\epsilon_0} \times \text {Solid angle subtended by the surface at\,}  \vec r_0.\]

Point Charge at the centre of a sphere

We present a simple case of calculation of a flux of a electric field due to a single point charge \(Q\) through a sphere of radius \(R\) with the charge at the centre. Now
\begin{eqnarray} \bar{E}&=&\label{eq3} \frac{Q}{4\pi\epsilon_0}\frac{\vec{r}}{r^3} \qquad \hat{n}=\frac{\vec{r}}{r} \\
\bar{E}\cdot\hat{n}&=&\frac{Q}{4\pi\epsilon_0}\frac{1}{r^2} \label{eq5} \end{eqnarray}
$\bar{E}\cdot\hat{n}$ has the same value all over the surface. Therefore
\begin{eqnarray}
\sum_k\bar{E}_k\hat{n_k}&=&\frac{Q}{4\pi\epsilon_0}\frac{1}{r^2}\times
4\pi\epsilon_0 r^2 \label{eq6}\\
&=&Q/\epsilon_0 \label{eq7}
 \end{eqnarray}
 Other cases when the charge is not at the center, and the case when the surface is not spherical cannot be handled in the direct fashion outlined above.   

Exclude node summary : 

n
0
 
X