Notices
 

[MCQ/QM-05001] Computing probabilty for outcome of a measurement

For page specific messages
For page author info

 

SOLUTION STEPS 

  1. Find normalized eigenvector of the matrix \(A\) corresponding to the eigenvalue 1. By solving    \[A | 1 \rangle = |1\rangle\]
  2. Take scalar product of the eigenvector \(|1\rangle\)  with \(\\psi\rangle\).This means compute \(\langle 1| \psi\rangle \).
  3. And then take absolute square of the scalar product. So the answer will be \(\langle 1| \psi\rangle |^2\).

Computation

  1. Calculation gives \[ |1\rangle =  \frac{1}{\sqrt{2}}\begin{pmatrix} 0 \\ 1\\ -1 \end{pmatrix}\]
  2. Scalar product with \(\\langle 1 |\psi \rangle\) = -1/2.
  3. So probability is 1/4

ANSWER

Option (d) is the correct answer.

 

 

 

 

 

 

Exclude node summary : 

n
0
 
X