Notices
 

[NOTES/EM-12002]-Electromagnetic Field Tensor and Maxwell's equations

For page specific messages
For page author info

The field tensor for the electromagnetic fields is defined in terms of the vector potential. It components are expressed in terms of the electric and magnetic fields. The Maxwell's equations are written down in relativistic notation.


 

1.Field tensor of e.m. field 

We introduce antisymmetric second rank tensor \(F^{\mu\nu}\) defined by \begin{equation} F^{\mu\nu}= \partial^\mu A^\nu - \partial_\nu A^\mu. \end{equation} The components of \(F\) with \(\mu=\nu\) vanish due to antisymmetry in \(mu\) and \(\nu\). Other components of \(F^{\mu\nu}\) are related to the electric and magnetic fields. To see the connection we explicitly write the expressions for other components. \begin{eqnarray} F^{01} &=& \partial^0 A^1-\partial^1 A^0 = \pp[A_x]{t} + \pp[\phi]{x},\\ F^{12} &=& \partial^1 A^2 - \partial^2 A_1 =-\pp[A_y]{x} + \pp[A_x]{y} = - B_z. \end{eqnarray} Here it must be remembered that \[\partial^0=\partial_0=\pp{t},\text{ and } \big(\partial_1, \partial_2, \partial_3\big)= \left(\pp{x}, \pp{y},\pp{z}\right)= - \big(\partial^1, \partial^2, \partial^3\big).\] Similarly, we have \begin{eqnarray} F^{23} &=& \partial^2 A^3 - \partial^3 A^2 = - \pp[A_z]{y} + \pp[A_y]{z} = - B_x\\ F^{31} &=& \partial^3 A^1 - \partial^1 A^3 = - \pp[A_x]{z} + \pp[A_z]{x} = - B_y \end{eqnarray} We can think of the tensor \(F^{\mu\nu}\) as a \(4\times4\) matrix and write it as \begin{equation}\label{EQ06} F^{\mu\nu}=\left( \begin{array}{rrrr} 0\ & -E_x & -E_y & -E_z \\ E_x & 0\ & -B_z & B_y\\ E_y & B_z & 0\ & -B_x\\ E_z & -B_y & B_x & 0\ \\ \end{array}\right). \end{equation}

2.Transformation of Fields

The electromagnetic field tensor \(F^{\mu\nu}\) has been written as a \(4\times4\) matrix in \eqRef{EQ06}. We will now verify the two of the Maxwell's equations can be written as \begin{equation}\label{EQ02} \partial_\mu F^{\mu\nu}=-\frac{j^\mu}{\epsilon_0}, \quad \nu=0,..,3, \end{equation} in relativistic notation. Consider \(\nu=0 \) part of \EqRef{EQ02}: \begin{eqnarray} \partial_0 F^{00} + \partial_1 F^{10}+ \partial_2 F^{20} + \partial_3 F^{30} &=&\frac{j^0}{\epsilon_0 } \\\nonumber \partial_x E_x+ \partial_y E_y + \partial_z E_z &=&\frac{j^0}{\epsilon_0 }\\ \nabla\cdot\vec{E} &=&\frac{\rho}{\epsilon_0 } \label{EQ03}. \end{eqnarray} Next we take \(\nu=1\) in \EqRef{EQ02}. This gives us \begin{equation} \partial_\nu F^{\nu1} = \frac{j^1}{\epsilon_0} \label{EQ04} \end{equation} Writing out all terms in the summation over \(\nu\) we get \begin{eqnarray} \label{EQ05} \partial_0 F^{01} + \partial_1 F^{11}+ \partial_2 F^{21} + \partial_3 F^{31} = \frac{j^1}{\epsilon_0} \end{eqnarray} Substituting the components of \(F^{\mu\nu}\) from \eqref{\TheFile;EQ01} we get \begin{eqnarray} - \partial_t E_x + 0 + \partial_y B_z - \partial_z B_y = \frac{j^1}{\epsilon_0}\\  (\nabla\times \vec{B})_x = \frac{j_x}{\epsilon_0} + \dd[E_x]{t} \end{eqnarray} This equation can now be combined with the other two equations for \(\nu=2,3\). Restoring appropriate factors, when \(c\ne 1\), we would get \begin{equation} \nabla\times\vec{B} = \mu_0\vec{j} + {\mu_0\epsilon_0}\dd[\vec{E}]{t}. \label{EQ09} \end{equation}

Levi Civita symbol

The Levi Civita symbol \(\varepsilon^{\mu\nu\lambda\sigma}\) is a completely antisymmetric tensor under exchange of any two indices and is defined to have the value \(\varepsilon^{0123}=1\). As usual the indices can be lowered using the metric tensor and we have the tensor \(\varepsilon_{\mu\nu\lambda\sigma}\) defined by, \begin{equation} \epsilon_{\mu\nu\lambda\sigma} = g_{\mu\alpha}g_{\nu\beta}g_{\lambda\gamma} g_{\sigma \delta} g^{\alpha\beta\gamma\delta}. \end{equation} This also is completely antisymmetric under exchange of any pari of indices and has value \(\varepsilon_{0123}=1\). Using Levi Civita symbol, we define the tensor \(G_{\mu\nu}\) by \begin{equation} \label{EQ10} G_{\mu\nu} = \varepsilon_{\mu\nu\lambda\sigma} F^{\lambda\sigma}. \end{equation} By virtue of its definition the dual tensor \(G_{\mu\nu}\) satisfies the equation \begin{equation} \label{EQ11} \partial^\mu G_{\mu\nu} =0 \end{equation} We will now give a proof of the above relation. Using the definition of \(G_{\mu\nu}\) we get \begin{eqnarray} \partial^\mu G_{\mu\nu} &=& \partial^\mu \epsilon_{\mu\nu\lambda\sigma}( F^{\lambda\sigma})\\ &=& \epsilon_{\mu\nu\lambda\sigma} \partial^\mu ( \partial^\lambda A^{\sigma} - \partial^\sigma A^\lambda) \\ &=& \epsilon_{\mu\nu\lambda\sigma} \big[\partial^\mu \partial^\lambda A^{\sigma}-\partial^\mu\partial^\sigma A^\lambda\big]\\ &=& \epsilon_{\mu\nu\lambda\sigma} (\partial^\mu \partial^\lambda A^{\sigma})-\epsilon_{\mu\nu\lambda\sigma}(\partial^\mu\partial^\sigma A^\lambda) \label{EQ18} \end{eqnarray} Consider the first term. Here \(\epsilon\) is antisymmetric under exchange of the indices \(\mu\) and \(\lambda\). It is multiplied by \(\partial^\mu \partial^\lambda A^{\sigma})\) which is symmetric under exchange of \(\mu\) and \(\lambda\) \(\{\because \partial_\mu\partial_\lambda = \partial_\lambda\partial_\mu\} \). Therefore the sum over all values of \(\mu\) and \(\lambda\) vanishes. The second term in \EqRef{EQ18} also vanishes for the same reason. \MkGBx{Prove this result!}

Question For You

Write the components of \(G_{\mu\nu}\) explicitly in terms of the electric and magnetic field and show that the remaining two Maxwell's equations, \begin{equation} \nabla \times \vec{E} = -\dd[\vec{B}]{t}, \qquad \nabla\cdot \vec{B} =0, \end{equation} are contained in \eqref{\TheFile;EQ11}.

References :

  1. Sec 26-3 Relativistic transformation of fieldsR. P. Feynman, Robert B. Leighton and Mathew Sands Lectures on Physics, vol-II, B.I. Publications (1964)

  2. Sec 11.2 The electromagnetic field tensor

    Jack Vanderlinde, Classical Electromagnetic Theory, 2nd edition, Kulwer Academic Publishers, New York, 2004.

 

Exclude node summary : 

n

4727:Diamond Point

800
0
 
X