$\newcommand\lambdabar{ \raise2.5pt{\moveright5.0pt\unicode{0x0335}}\moveleft1pt\lambda }$
- Radiosity $$M_e = \frac{c}{4} u,$$ where $u$ is the space density of thermal radiation energy.
- Wien's formula and Wien's displacement law: $$u_\omega = \omega^3F(\omega/T), T\lambda_m = b,$$ where $\lambda_m$ is the wavelength corresponding to the maximum of the function $u_\lambda$.
- Stefan-Boltzmann law: $$M_e = \sigma T^4,$$ where $\sigma$ is the Stefan-Boltzmann constant.
- Planck's formula: $$u_\omega = \frac{\hbar \omega^3}{\pi^2c^3}\frac{1}{e^{\hbar\omega/kT}-1}.$$
- Einstein's photoelectric equation: $$\hbar \omega = A + \frac{mv^2_{max}}{2}.$$
- Compton effect: $$\Delta\lambda = 2\pi \lambdabar_C(1-\cos \theta),$$ where $\lambdabar_C = \hbar/mc$ is Compton's wavelength.
Exclude node summary :
n
Exclude node links:
0
0