Notices
 

[NOTES/QFT-04007] Green Function for Schrodinger equation

For page specific messages
For page author info

qft-lsn-04007

 I Lesson Overview

Syllabus

Green function as vacuum expectation value of time ordered product of
Schrodinger field.

Prerequisites

Time development in quantum mechanics; Definition of Green function
for a partial differential equation.

Objectives

  1. To introduce the vacuum expectation value (VEV) of time ordered product of field operators. and to relate it to the Green function of the Schrodinger equation.
  2. To evaluate the VEV of time ordered product using the solution of the field equations.
  3. To show that the Green function is related to the propagator for Schrodinger equation in quantum mechanics.

Recall and Discuss

Solution of Time Dependent Schrodinger Equation

For time independent Hamiltonian \(\widehat{H}\) the solution of the
time dependent Schrodinger equation is
\begin{eqnarray} \psi(\mathbf x,t) = \sum_n c_n e^{-iE_n(t-t_0)/\hbar} u_n(\mathbf x). \end{eqnarray}
where \(E_n, u_n\) are the energy eigenvalues and eigenfunctions and
\(c_n\) are given in terms of the wave function \(\psi(\mathbf x,t_0\))at
time \(t_0\) by
\begin{equation} c_n = \int u_n^*(\mathbf x) \psi(\mathbf x,t_0)\, d\mathbf x \end{equation}

Propagator in quantum mechanics

The propagator \(K(\mathbf x,t; \mathbf x_0t_0)\) for Schrodinger equation is defined as solution of the time dependent Schrodinger equation \begin{equation} i\hbar \pp{t} K(\mathbf x,t;\mathbf x_0,t_0)- \widehat{H} K(\mathbf x,t;\mathbf x_0,t_0)=0 \end{equation} subject to the initial condition \begin{equation} K(\mathbf x,t;\mathbf x_0, t_0)\big|_{t=t_0} = \delta^{\mathbf x-\mathbf x_0}. \end{equation} The Green function \(G(\mathbf x,t;\mathbf x_0,t_0)\) defined by \begin{equation} G(\mathbf x,t;\mathbf x_0,t_0) =\theta(t-t_0)K(\mathbf x, t;\mathbf x_0,t_0) \end{equation} obeys \begin{equation} i\hbar \pp{t} G(\mathbf x,t;\mathbf x_0,t_0)- \widehat{H} G(\mathbf x,t;\mathbf x,t_0)=\delta(\mathbf x-\mathbf x_0).\qquad  \end{equation}Verify this

 

II VEV of Time Ordered Product 

  • Show that \(\begin{equation} G(x -x{'}, t -t{'}) = \matrixelement{0}{T\psi(x, t)\psi^\dagger (x{'}, t{'}))}{0} \end{equation}\) obeys the equation for Green function of the free particle Schrodinger equation.
  • Use expansion of the field operators in terms of free particle wave function \(N \exp(ikx - iE_k t)\), where \(E_k = \frac{\hbar^2k^2}{2m}\). Obtain an explicit expression for this time ordered product as a function of \(x, t, x{'} , t{'}\).
  • Have you seen this object before? Where?  
  1. The field operator satisfies the equation $$\displaystyle{i\hbar{\partial\over\partial t}\psi(\mathbf x,t) = -{\hbar^2\over2m}\nabla^2\psi(\mathbf x,t)}$$ The function \(G(\mathbf x,t;\mathbf x{'},t{'})\) is \begin{align*} G(\mathbf x,t;\mathbf x{'}, t{'}) =&\langle 0|T\big(\psi(\mathbf x,t)\psi^\dagger(\mathbf x{'},t{'})\big)|0\rangle\\ =& \langle0|\psi(\mathbf x,t)\psi^\dagger(\mathbf x{'}, t{'})|0\rangle\theta(t-t{'}) +\langle0|\psi^\dagger(\mathbf x{'} t{'})\psi(\mathbf x,t)|0\rangle\theta(t{'}-t) \end{align*} Therefore, \[\begin{eqnarray*} i\hbar{\partial\over\partial t}G(\mathbf x,t;\mathbf x{'},t{'}) &=& \langle0|i\hbar{\partial\over\partial t} \psi(\mathbf x,t)\psi^{\dagger}(\mathbf x{'}, t{'})|0\rangle\theta(t-t{'}) +i\hbar\langle0|\psi(\mathbf x,t)\psi^\dagger(\mathbf x{'},t{'})|0\rangle \delta(t-t{'})\\ &&+i\hbar \langle0|\psi^{\dagger}(\mathbf x{'}, t{'}){\partial\over\partial t} \psi(\mathbf x,t) |0\rangle\theta(t{'}-t)-i\hbar\langle0|\psi^\dagger(\mathbf x{'}, t{'})\psi(\mathbf x,t)|0\rangle\delta(t{'}-t)\\ && \qquad\qquad \mbox{\text{we have used} \(\quad\dd{t}\theta(t-t{'})=\delta(t-t{'})= -\dd{t} \theta(t{'}-t)\) } \\ &=&-{\hbar^2\over2m}\nabla^2\langle0|\psi(\mathbf x,t)\psi^\dagger(\mathbf x{'}, t{'})|0\rangle\theta(t-t{'})-{\hbar^2\over2m}\nabla^2\langle0| \psi^\dagger(\mathbf x{'}, t{'}) \psi(\mathbf x,t)|0\rangle\theta(t{'}-t)\\ &&+i\hbar\langle0|\big[\psi(\mathbf x,t),\psi^\dagger(\mathbf x{'}, t{'})\big]|0\rangle\delta(t-t{'}) \end{eqnarray*}\] The last term becomes equal time commutator due to $\delta(t-t{'})$ function.\\ Therefore, we get \begin{align*} i\hbar{\partial\over\partial t}G(\mathbf x,t;\mathbf x{'},t{'})+{\hbar^2\over2m}\nabla^2G(\mathbf x,t, \mathbf x{'}, t{'}) = i\hbar\delta(t-t{'})\delta(\mathbf x-\mathbf x^{\,{'}}) \end{align*}
  2. The field $\psi(\mathbf x,t)$ obeys free particle equation therefore we write it as a superposition \begin{align*} \psi(\mathbf x,t)= \iiint^{\infty}_{-\infty} {d^3k\over(2\pi)^{3/2}} \exp(i\mathbf k\cdot\vec{\mathbf x}-iE_kt/\hbar)\, a(\mathbf k) \end{align*} of free particle solutions \(\displaystyle {1\over(2\pi)^{3/2}} \exp(i\mathbf k\cdot\mathbf x-iE_kt/\hbar)\). Now \begin{eqnarray*} \psi(\mathbf x,t)\psi^\dagger(\mathbf x{'},t{'})&=&\iiint_{-\infty}^\infty{ d^3k\over(2\pi)^{3/2}} e^{i\mathbf k\cdot\mathbf x-iE_kt/\hbar} a(\mathbf k)\times \iiint_{-\infty}^\infty{d^3q\over(2\pi)^{3/2}} e^{-i\mathbf q\cdot\mathbf x{'} +i E_qt{'}/\hbar} a^\dagger(\mathbf q) \end{eqnarray*} Therefore, the vacuum expectation value of the time ordered product becomes \begin{align*} \langle0|T&\big[\psi(\mathbf x,t)\psi^\dagger(\mathbf x{'},t{'})\big] |0\rangle\\&= \iiint_{-\infty}^\infty {d^3k\over(2\pi)^{3/2}} \iiint^\infty_{-\infty} {d^3q\over(2\pi)^{3/2}} e^{i(\mathbf k\cdot\vec{\mathbf x}-E_kt/\hbar)} e^{-i(\mathbf q\cdot \mathbf x{'}-E_qt/\hbar)}\\ &\times\big\{ \langle0|a(\mathbf k)a^\dagger(\mathbf q)|0\rangle\theta(t-t{'})+\langle0|a^ \dagger(\mathbf q) a (\mathbf k)|0\rangle\theta(t{'}-t)\big\} \end{align*} The last term vanishes because $a|0\rangle=0$. Also \begin{eqnarray}\nonumber \langle0|a(\mathbf k)a^\dagger(\mathbf q)|0\rangle\theta(t-t{'}) &=&\langle0|\big[a(\mathbf k),a^\dagger(\mathbf q)\big] |0\rangle\theta(t-t{'})+\langle0|a^\dagger(\mathbf q)a(\mathbf k)|0\rangle \theta(t -t{'})\\ &=&\delta(\mathbf k-\mathbf q)\theta(t-t{'}) \end{eqnarray} Substituting in Eq.(1) and using $\delta(\mathbf k-\mathbf q)$ to do the $\mathbf q$ integrals gives \begin{align*} \langle0|T\psi(\mathbf x,t)\psi^\dagger(\mathbf x{'},t{'})|0\rangle= \theta(t-t{'}) \iiint_{-\infty}^\infty {d^3k\over(2\pi)^3}\exp\Big[\mathbf k\cdot(\mathbf x-\mathbf x{'}) - {i\hbar^2\over2m} {(t-t{'})\mathbf k^2\over\hbar}\Big] \end{align*} The integrals over $\mathbf k$ are now Gaussian and can be done by completing the sequences. This gives the answer for the vacuum expectation value of the time ordered product as \begin{align*} \langle0|T\psi(\mathbf x,t)\psi^\dagger(\mathbf x{'},t{'})|0\rangle = \theta(t-t{'}) \left[{m\over2\pi i\hbar(t-t{'})}\right]^{3/2}\exp\left({ im(\mathbf x-\mathbf x{'})^2\over2\hbar(t-t{'})}\right) \end{align*}
  3. This expression is just the Green function for free particle wave function in Schrodinger quantum mechanics. $$ \psi(\mathbf x,t)=\iiint d\mathbf x{'} G(\mathbf x,t;\mathbf x{'}, t{'})\psi(\mathbf x{'}, t{'})d\mathbf x{'} $$

 III EndNotes

Green function The Green function for a partial differential equation \begin{equation}L G( \mathbf x,t;\mathbf x_0,t_0) = \delta(\mathbf x-\mathbf x_0)\end{equation} will depend on \(t-t_0\) if the operator \(L\) does not depend on time explicitly. In this case the solution can be obtained in terms of eigenfunctions of \(L\), as you have seen in quantum mechanics. The Green function can be written as \begin{equation}G(\mathbf x,t; \mathbf x,t_0)= \theta(t-t_0))K(\mathbf x,t; \mathbf x_0,t_0)\end{equation} and \(K(\mathbf x,t;\mathbf x_0,t_0)\) obeys the equation \begin{equation}L K(\mathbf x,t;\mathbf x,t_0)=0, \qquad\text{where }K(\mathbf x,t;\mathbf x_0,t_0)\big|_{t=t_0}=\delta(\mathbf x-\mathbf x_0)\end{equation} As you would realize that the corresponding objects in quantum mechanics and field theory discussed in this lesson are just special cases for \(L=H\).

Exclude node summary : 

n
0
 
X