Find the matrix representation of the operators \(A\) on the vector space of all \(2\times 2\) real matrices, where
\[ A \begin{pmatrix} a & b \\c & d\end{pmatrix} =
\begin{pmatrix}1 & 1\\1& 1 \end{pmatrix}
\begin{pmatrix} a & b \\c & d\end{pmatrix},\]
in the basis
\begin{equation*}
e_1 = \begin{pmatrix}
1 & 0\\0& 0&0
\end{pmatrix};\quad
e_2 = \begin{pmatrix}
0 & 1 \\ 0 & 0
\end{pmatrix};\quad
e_3 = \begin{pmatrix}
0 & 0 \\ 1 & 0
\end{pmatrix};\quad
e_4 = \begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix}.
\end{equation*}
Exclude node summary :
Exclude node links:
4727:Diamond Point