Show that the eigenvectors \(x_1, x_2, \ldots, x_n\) of an operator \(A\) corresponding to distinct eigenvalues \(\lambda_1, \lambda_2, \ldots\lambda_n \) are linearly independent.
Exclude node summary :
n
Exclude node links:
0
4727:Diamond Point
0
Show that the eigenvectors \(x_1, x_2, \ldots, x_n\) of an operator \(A\) corresponding to distinct eigenvalues \(\lambda_1, \lambda_2, \ldots\lambda_n \) are linearly independent.
4727:Diamond Point