Notices
 
For page specific messages
For page author info

Consider the set of all vectors \(\xi=(\xi_1,\xi_2,\xi_3)\) in \(\C^(3)\) for
which

  1. \(\xi_1\) is real 
  2. \(\xi=0\)
  3. \(|\xi_1|> 0\)
  4.  either \(\xi_1\) or \(\xi_2\) equal to zero
  5. \(\xi_1+\xi_2=0\)
  6. \(\xi_1+\xi_2=1\)

In which of the  above  cases do the set of all vectors form \(\xi\) form a vector
space?

Exclude node summary : 

n

4727:Diamond Point

0
 
X