Category:
Consider a particle of mass \(\mu\) moving in a potential \[ V(r) = \frac{1}{2}\mu\omega^2 r^2 +\frac{\lambda^2}{2\mu r^2}. \]
- Find condition on energy \(E\) and angular momentum \(L\) for circular orbits to exist.
- Does there exist a circular orbit for \(L=0\)?
- Assume orbital angular momentum \(L=0\), energy \(E= \frac{25}{2}\mu\omega^2a^2\), \(\lambda=12\mu\omega^2\) Use initial conditions \[ r(t)\big|_{t=0} = 4a;\quad \dot{r}(t)\big|_{t=0} = 0 \text{ and } \dot{\theta(t)}\big|_{t=0}=0 \] solve the equations of motion and obtain \(r\), \(\theta\) as function of time. Describe the motion that takes place under conditions specified here.
Exclude node summary :
n
Exclude node links:
0
4727:Diamond Point
0