Notices
 

[QUE/EM-05009] --- EM-PROBLEM

For page specific messages
For page author info

A dipole is embedded at the center of a sphere of linear dielectric material ( with radius \(R\) and dielectric constant \(\epsilon_r\) ). Show that the electric potential inside and outside the sphere is

\[ \Phi(r) = \begin{cases} \frac{p\cos\theta}{4\pi \epsilon r^2}\left( 1+ 2 \frac{r^3}{R^3}\frac{(\epsilon_1-1)}{(\epsilon_r+2)}\right)  & r \le R \\ \frac{p\cos\theta}{4\pi \epsilon_0 r^2} \left(\frac{3}{\epsilon_r+2}\right)& r \ge R\end{cases} .\]

Exclude node summary : 

n

4934: EM-HOME, 4727: Diamond Point

0
 
X