# Typing mathematical expressions

For page specific messages
For page author info

Remember: We are using MathJax for mathematical expressions. Text formatting commands of TeX/LaTeX are not supported in MathJax.

Mathematical expressions can be inserted within HTML text of all content types (e.g., page, book page, blog, forum) edited using the available online WYSIWYG HTML editor. The mathematical expressions must be typed using the syntax of TeX/LaTeX.

The easiest way to start is to author a page with some LaTeX code for mathematical expressions given here (based on the code snippets from an online cookbook).

[For a more comprehensive documentation of the TeX commands supported in MathJax, see this document.]

To put mathematical expressions in a line (inline mode), or equations (paragraph mode), we can use single dollar character (\$) or double dollar characters (\$\$) respectively as delimiters to surround the mathematical expression within the HTML editor available for almost all content types (e.g., page, book page, blog, forum). Of course, the mathematical expressions must be typed using a special syntax (TeX/LaTeX). Easiest way to start is to author a page with some LaTeX code for mathematical expressions given below . If you copy-paste code snippet from the examples below, do not forget to select and change the format (first drop-down in toolbar) of the pasted text from Preformatted to Paragraph. [For a more comprehensive documentation of TeX syntax, see this document.] ### Inline mode with$

 $x=\frac{1+y}{1+2z^2}$ $$x=\frac{1+y}{1+2z^2}$$ $x=\frac{1+y}{1+2z^2}$ $x=\frac{1+y}{1+2z^2}\nonumber$ $\int_0^\infty  e^{-x^2}dx=\frac{\sqrt{\pi}}{2}$ $$\int_0^\infty e^{-x^2} dx=\frac{\sqrt{\pi}}{2}$$ $\int_0^\infty e^{-x^2} dx =\frac{\sqrt{\pi}}{2}$ $\int_0^\infty e^{-x^2} dx=\frac{\sqrt{\pi}}{2}\nonumber$ $\displaystyle \int_0^\infty  e^{-x^2} dx$ $$\displaystyle \int_0^\infty e^{-x^2} dx$$ $\frac{1}{\displaystyle 1+\frac{1} {\displaystyle 2+\frac{1} {\displaystyle 3+x}}}+\frac{1} {1+\frac{1}{2+\frac{1}{3+x}}}$ $\frac{1}{\displaystyle 1+ \frac{1}{\displaystyle 2+ \frac{1}{\displaystyle 3+x}}} + \frac{1}{1+\frac{1}{2+\frac{1}{3+x}}}\nonumber$

### Spaces and text in math

Horizontal spacing

 $\sqrt{2} \sin x$, $\sqrt{2}\,\sin x$ $$\sqrt{2} \sin x$$, $$\sqrt{2}\,\sin x$$ $\int \!\! \int f(x,y)\,\mathrm{d}x\mathrm{d}y$ $$\int \!\! \int f(x,y)\,\mathrm{d}x\mathrm{d}y$$ $\mathop{\int \!\!\! \int}_{\mathbf{x}  \in \mathbf{R}^2} \! \langle \mathbf{x}, \mathbf{y}\rangle \, d\mathbf{x}$ $\mathop{\int \!\!\! \int}_{\mathbf{x} \in \mathbf{R}^2} \! \langle \mathbf{x},\mathbf{y}\rangle \,d\mathbf{x}\nonumber$ $x_1 = a+b \mbox{ and } x_2=a-b$ $x_1 = a+b \mbox{ and } x_2=a-b\nonumber$ $x_1 = a+b ~~\mbox{and}~~ x_2=a-b$ $x_1 = a+b ~~\mbox{and}~~ x_2=a-b\nonumber$

Vertical spacing

 Without vertical space adjustment Show that the solution of the partial differential equation$\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{\partial t}$          which satisfies the conditions: Show that the solution of the partial differential equation$\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{\partial t}$          which satisfies the conditions: With vertical space adjustment Show that the solution of the partial differential equation$\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{\partial t}$(no linebreak here)          which satisfies the conditions: Show that the solution of the partial differential equation$\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{\partial t}$         which satisfies the conditions: Without vertical space adjustment $$\displaystyle \frac{\partial u(x,t)}{\partial x} =0$$, $$u(x,t)$$ is bounded for all $$-a\le x \le a$$ as $$t\to \infty$$, $$u(x,t)\big|_{t=0}= |x|$$,  for $$-a \le x\le a$$ $$\displaystyle \frac{\partial u(x,t)}{\partial x} =0$$, $$u(x,t)$$ is bounded for all $$-a\le x \le a$$ as $$t\to \infty$$, $$u(x,t)\big|_{t=0}= |x|$$,  for $$-a \le x\le a$$ With vertical space adjustment $$\displaystyle \frac{\partial u(x,t)}{\partial x} =0$$, $$\\[10pt]$$ $$u(x,t)$$ is bounded for all $$-a\le x \le a$$ as     $$t\to \infty$$, $$\\[8pt]$$ $$u(x,t)\big|_{t=0}= |x|$$,  for $$-a \le x\le a$$ $$\displaystyle \frac{\partial u(x,t)}{\partial x} =0$$, $$\\[10pt]$$ $$u(x,t)$$ is bounded for all $$-a\le x \le a$$ as     $$t\to \infty$$, $$\\[8pt]$$ $$u(x,t)\big|_{t=0}= |x|$$,  for $$-a \le x\le a$$

textstyle, displaystyle, scriptstyle and sizes!

 In-line maths elements can be set with a different style:  $$f(x) = \displaystyle \frac{1}{1+x}$$.  The same is true the other way around:    \begin{eqnarray*}  f(x) = \sum_{i=0}^{n} \frac{a_i}{1+x} \\  \textstyle f(x) = \textstyle \sum_{i=0}^{n} \frac{a_i}{1+x} \\  \scriptstyle f(x) = \scriptstyle \sum_{i=0}^{n} \frac{a_i}{1+x} \\  \scriptscriptstyle f(x) = \scriptscriptstyle \sum_{i=0}^{n} \frac{a_i}{1+x}  \end{eqnarray*}  In-line maths elements can be set with a different style: $$f(x) = \displaystyle \frac{1}{1+x}$$. The same is true the other way around:\begin{eqnarray*} f(x) = \sum_{i=0}^{n} \frac{a_i}{1+x} \\ \textstyle f(x) = \textstyle \sum_{i=0}^{n} \frac{a_i}{1+x} \\ \scriptstyle f(x) = \scriptstyle \sum_{i=0}^{n} \frac{a_i}{1+x} \\ \scriptscriptstyle f(x) = \scriptscriptstyle \sum_{i=0}^{n} \frac{a_i}{1+x} \end{eqnarray*}

### Accents, over/under-line/brace...

 $\left] 0,1 \right[ + \lceil x \rfloor  -\langle x,y\rangle$ $$\left] 0,1 \right[ + \lceil x \rfloor - \langle x,y\rangle$$ ${n+1\choose k} = {n\choose  k} +{n \choose k-1}$ ${n+1\choose k} = {n\choose k} + {n \choose k-1}\nonumber$ $\underbrace{n(n-1)(n-2) \dots(n-m+1)}_{\mbox{total of  $m$factors}}$ $\underbrace{n(n-1)(n-2)\dots(n-m+1)}_{\mbox{total of$m$factors}\nonumber}$ $\hat{x}$, $\check{x}$,  $\tilde{a}$,$\bar{\ell}$,  $\dot{y}$,$\ddot{y}$, $\vec{z_1}$, $\vec{z}_1$ $\hat{x}$, $\check{x}$, $\tilde{a}$, $\bar{\ell}$, $\dot{y}$, $\ddot{y}$, $\vec{z_1}$, $\vec{z}_1$ $\hat{T} = \widehat{T}$,$\bar{T}  =\overline{T}$, $\widetilde{xyz}$, $\overbrace{a+ \underbrace{b+c}+d}$ $\hat{T} = \widehat{T}$,$\bar{T} = \overline{T}$, $\widetilde{xyz}$,$\overbrace{a+\underbrace{b+c}+d}$ $\overline{\overline{a}^2+ \underline{xy}+\overline{\overline{z}}}$ $$\overline{\overline{a}^2+\underline{xy}+\overline{\overline{z}}}\nonumber$$ $\underbrace{a+\overbrace{b+ \cdots}^{{}=t}+z}_{\mathrm{total}} ~~a+ {\overbrace{b+\cdots}}^{126}+z$ $$\underbrace{a+\overbrace{b+\cdots}^{{}=t}+z}_{\mathrm{total}} ~~a+{\overbrace{b+\cdots}}^{126}+z\nonumber$$

n
0

X