Notices
 

QS 3: States that are free in the past

For page specific messages
For page author info

We now come to the central concept of the scattering theory. What does it mean when we say that a particle moving under the influence of a potential $V$ looks like a free particle in the remote past?

Let us consider two systems. One, the actual system, with hamiltonian $H$. Its states are represented by vectors $\psi$ etc. in a Hilbert space $\h$. The other is a fictitious,  free system, with hamiltonian $H_0$, and states represented by vectors in the same common Hilbert space.

Let $\psi$ be the state of the particle at some given time, say  $t=0$. Then the state at time $t$ is
\begin{eqnarray*} \psi(t)=U(t)\psi\qquad U(t)=\exp(-iHt/\hbar) \end{eqnarray*}
A vector  $\phi \in \h$ would represent the sate of a free particle at $t=0$ if, at any other time $t$, it were given by
\begin{eqnarray*} \phi(t)=U_0(t)\psi\qquad U_0(t)=\exp(-iH_0t/\hbar). \end{eqnarray*}


Now suppose that $\psi(t)$ is such that it becomes {\em indistinguishable} from $\phi(t)$ (for some $\phi$) for large negative $t$ then we can say that the particle indeed behaves like a free particle in remote past, that is, if
\begin{eqnarray*} \lim_{t\to -\infty}\psi(t)=\lim_{t\to -\infty}\phi(t). \end{eqnarray*}

Exclude node summary : 

n
0
 
X