Notices
 

Browse & Filter

For page specific messages
For page author info
Enter a comma separated list of user names.
13 records found.
Operations
Title+Summary Name Datesort ascending

[QUE/QM-07015]

Node id: 2801page

$\newcommand{\ket}[1]{|#1\rangle}$

{Let \(\ket{E_1},\ket{E_2}\) denote normalized energy eigenstates with energies \(E_1\ne E_2\). Let \(\psi\) be the superposition  \[ \ket{\psi} = a\ket{E_1} + b\ket{E_2},\]  \(a,b\) are complex constants. Obtain an expression for the uncertainty in energy \((\Delta E)_\psi\)in the state \(\ket{\psi}\). Find all conditions so that \(\Delta E\) may be zero, and interpret the answers you get.}

kapoor's picture 22-04-11 13:04:52 n

[QUE/QM-07014]

Node id: 2802page
kapoor's picture 22-04-11 13:04:13 n

[QUE/QM-07013]

Node id: 2803page

Show that if an operator commutes with to components of angular momentum, it commutes with the third component as well.

{Daniel F. Styer}

kapoor's picture 22-04-11 13:04:19 n

[QUE/QM-07012]

Node id: 2804page
 
Consider the space of square integrable functions on a plane.  \[ \iint dx\,dy  |\psi(x,y)|^2 < \infty.\]  Define radial and angular momenta operators  \(\hat{p}_r, \hat{P}_\theta\) on the subset of functions  satisfying  \[\psi(r,\theta+2\pi) = \psi(r,\theta), \qquad \psi(r, \theta)|_{r=0} =  \psi(r,\theta)|_{r\to \infty} =0 .\]
  1. Show that \({P}_{\theta}= -i\hbar\frac{\partial}{\partial\theta}\) satisfies \[\Big(\phi(r,\theta), \hat{P}_\theta \psi(r,\theta)\Big) = \Big(\hat{P}_\theta\phi(r,\theta), \psi(r,\theta)\Big) \] and is, therefore, a hermitian operator.
  2. Find the hermitian conjugate of the operator \(\hat{p}_r\equiv-i\hbar\frac{\partial}{\partial r}\). Show that \(\hat{p}_r\) is not a hermitian operator.
  3. Find a hermitian operator \(\hat{P}_r\) that may represent radial momentum in two dimensions.
  4. Consider the classical free Hamiltonian \( H_{cl} = \frac{P_r^2}{2m} + \frac{P_\theta^2}{2mr^2}.\) Replace the classical momenta \(P_r, P_\theta\) by corresponding hermitian momentum operators \(\hat{P}_r, \hat{P}_\theta\). Compare your answer for the operator so obtained with the free particle Schr\"{o}dinger Hamiltonian \[\widehat{H}_0 = -\frac{\hbar^2}{2m}\Big(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y}\Big).\] and give your comments.
kapoor's picture 22-04-11 12:04:28 n

[QUE/QM-07011]

Node id: 2805page

A physical system has dynamical variables $X,Y,Z$ represented by the  $2\times2$ Pauli matrices $\sigma_x,\sigma_y,\sigma_z$.
Compute the average value of $\ell X + m Y + n Z $ in any one state in   which $a X + b Y + c Z $ has a definite value. Assume        $\ell^2 + m^2 +n^2=1$ and $a^2 + b^2 + c^2=1$.

kapoor's picture 22-04-11 12:04:57 n

[QUE/QM-07009]

Node id: 2807page

     A physical system has dynamical variables $X,Y,Z$ represented by the
     $2\times2$ Pauli matrices $\sigma_x,\sigma_y,\sigma_z$.
     
      Compute the average values of  the following operators in the specified
      states.

  1. The average of $X$ in the state represented by the vector $\begin{pmatrix}1 \\ 2\end{pmatrix}.$
  2. The average value of $Y+Z$ in the state in which the variable $X$ has a definite value -1 for $X$.
kapoor's picture 22-04-11 12:04:21 n

[QUE/QM-07008]

Node id: 2808page

     A physical system has dynamical variables $X,Y,Z$ represented by the   $2\times2$ Pauli matrices $\sigma_x,\sigma_y,\sigma_z$.

      In each of the following cases find out if the dynamical variables can  be measured simultaneously or not.

A physical system has dynamical variables $X,Y,Z$ represented by the $2\times2$ Pauli matrices $\sigma_x,\sigma_y,\sigma_z$. In each of the following cases find out if the dynamical variables can be measured simultaneously or not.

  1. $X $ and $Y$
  2. $Y$ and $Z$
  3. $Y^2$ and $Z$.


     

kapoor's picture 22-04-11 12:04:19 n

[QUE/QM-07007]

Node id: 2809page

A physical system has dynamical variables $X,Y,Z$ represented by the $2\times2$ Pauli matrices $\sigma_x,\sigma_y,\sigma_z$.

Compute the average values and uncertainties of $X,Y$ and $Z $  in a state represented by
$$ \chi = \begin{pmatrix} 1 + 2i \\ 1-3i  \end{pmatrix} $$

kapoor's picture 22-04-11 12:04:06 n

[QUE/QM-07006]

Node id: 2810page

Use the uncertainty principle to estimate the ground state energy of  harmonic oscillator.

kapoor's picture 22-04-10 18:04:07 n

[QUE/QM-07001]

Node id: 2814page

Use the uncertainty principle to estimate the ground state energy of H- atom.

kapoor's picture 22-04-10 11:04:52 n

[QUE/QM-07004]

Node id: 2812page

      Use results of problem [2] to find the minimum value of $V_0$ required  to confine an electron inside the nucleus. Take $Z=40$, $ A=64$ and use  radius of nucleus $\approx R_0 A^{1/3}$, where $R_0=1.2 \  \mbox{fm} $,  to estimate the numerical value of the potential required to confine the  electrons inside the nucleus. Compare this with the electrostatic
potential energy of the electron at the surface of the    nucleus.

 

kapoor's picture 22-04-10 11:04:53 n

[QUE/QM-07005]

Node id: 2811page

In the classical kinetic theory of gases, molecules are assumed to be point  particles ( of rigid shapes) in motion. Assume the average kinetic energy of the  molecules to be ${3\over 2} kT$. Using the uncertainty principle, estimate the  minimum uncertainty in position of a molecule. Compare this with average molecular distance for a gas of density $\rho$ ( $\rho=N/V$ , $N=$ number of  molecules and $V=$ volume )  When do the quantum mechanical effects become  significant ? Estimate this temperature for (a) He gas at normal pressure (b) an electron gas at density of $2.5 \times 10^{22} $ electrons/cc.

kapoor's picture 22-04-10 11:04:00 n

[QUE/QM-07002]

Node id: 2815page
Consider a particle in one dimensional square well potential
       \begin{equation}
              V(x) = \left\{ \begin{array}{ll}
                        0  & 0 \le x \le L  \\
                       V_0 & \mbox{otherwise}
                         \end{array} \right.
        \end{equation}
For a bound state we should have average energy less than V_0$.  $$ \langle E\rangle =\langle T\rangle + \langle V\rangle < V_0 $$   
where $\langle T\rangle$ and $\langle V\rangle$ are the averages of the  kinetic and  the potential energies,  respectively. If the  article  is to be confined to a region of size $L$, use   the uncertainty principle to get  a rough  estimate of average kinetic energy,  $\langle T\rangle$. Use this to find approximate minimum value of $V_0a^2$ required for a bound state to exist.
 squqre qell

 

 

kapoor's picture 22-04-06 16:04:21 n
 
X