Notices
 

Browse & Filter

For page specific messages
For page author info
Enter a comma separated list of user names.
19 records found.
Operations
Title+Summary Name Datesort ascending

[QUE/QFT-06004]

Node id: 3508page

Does there exist an invertible matrix \(S\) such that \[ S \gamma_\mu  S^{-1} = \gamma_\mu'\] where  \[\gamma_1'= \gamma_2\gamma_3, \quad \gamma_2'=\gamma_3\gamma_1, \quad \gamma_3'= \gamma_1\gamma_2, \gamma_4'=\gamma_5 \gamma_4?\] 

kapoor's picture 22-04-16 09:04:18 n

[QUE/QFT-06002]

Node id: 2306page

\(\newcommand{\ket}[1]{|#1\rangle}
\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}
\)
For a real free Dirac field, mass \(m\),  compute \[ \matrixelement{0}{\psi(x)\psi(y)}{\vec{p},r; \vec{q},s}\] and show that the result is  properly anti-symmetrized wave function for two identical fermions with momenta \(\vec{p},r;\vec{q},s\) and  spins \(r,s\). Here \(\ket{\vec{k}, \vec{q}}\) is the state with two fermions with momenta \(\vec{p}, \vec{q}\) and spins \(r,s\).

kapoor's picture 22-04-14 06:04:49 n

[QUE/QFT-06003]

Node id: 2305page

\(\newcommand{\ket}[1]{|#1\rangle} \newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}\)
Compute the matrix element  \[ \matrixelement{s,\vec{q}}{J_\mu(x)}{r,\vec{p}}\] where \(J_\mu(x)\) is the current for a Dirac particle and \( \ket{s,\vec{q}}\) and \(\ket{r,\vec{p}} \) denote  one particle states of spin half particle with spin and momenta as specified.

kapoor's picture 22-04-14 06:04:06 n

[QUE/QFT-06001]

Node id: 2304page


Let \(\Gamma\) denote a product of Dirac matrices. Define \(\widetilde{\Gamma}\) by \begin{equation*} \bar{u}(s,q) \widetilde{\Gamma}u(r,p) = (\bar{u}(r,p)^\dagger\Gamma u(s,q))^* . \end{equation*} Use the above definition of \(\widetilde{\Gamma}\) and show that

  1. \(\widetilde{\Gamma} = \gamma_0 \Gamma^\dagger \gamma_0. \)
  2.      \(\widetilde{\gamma^\mu} = \gamma^\mu \)
  3.     \(\widetilde{\gamma_5} = -\gamma_5\)
  4.     \(\widetilde{\gamma^\mu \gamma_5}= - \gamma^\mu \gamma_5\)

Compute \(\widetilde{\sigma}_{0k}\) and \(\widetilde{\sigma}_{ij}\) and hence show      that \(\widetilde{\sigma}_{\mu\nu}=\sigma_{\mu\nu}\)


kapoor's picture 22-04-13 22:04:49 n

[QUE/QFT-06005]

Node id: 2731page

Let \(a_{\mu\nu} \) give the Lorentz transformation \[x'^{\mu}=a_{\mu\nu} x^\nu.\] Show that  there exists an invertible matrix \(S\) such that \[S\gamma_\mu S^{-1}= a_{\mu\nu}\gamma^\nu . \]


qft-pso-06001

kapoor's picture 22-04-11 17:04:21 n

[QUE/QFT-06006]

Node id: 3509page

Let \(p^\mu\) be a time like momentum  vector. Let \(n^\mu\)  be a four vector
such that
\begin{equation}
 n^\mu p_\mu=0,  \text{ and } n^\mu n_\mu=-1.
\end{equation}
How many such independent four vectors \(n^\mu\) exist? How that the operators
\begin{equation}
 \Pi^\pm_n =\frac{1}{2}\big(1\pm \gamma_5 \slashed{n}\big)
\end{equation}
are projection operators satisfying.
\begin{equation}
 \Pi^{(+)2}_n = \Pi^{(-)2}_n = I, \qquad \Pi^{(+)}_n \Pi^{(-)}_n =0.
\end{equation}
The notation here is same as in Bjorken and Drell, Gasiorowicz. 

kapoor's picture 22-04-08 07:04:45 n

[QUE/QFT-06008] Dirac particle in uniform magnetic field

Node id: 3511page

Consider an electron in a uniform and constant magentic field \(\vec{B}\) along the \(z-\)axis. Obtain the most general four component positive energy eigennfunctions. Show that the energy eigenvalues are given by
\[ E= \sqrt{m^2c^4 + c^2p_3^2 + 2ne\hbar c|\vec{B}|}\]
with \(n=0,1,2,...\). List all the constants of motion.

kapoor's picture 22-04-07 20:04:56 n

[QUE/QFT-06012] QFT-PROBLEM

Node id: 4372page

Let \(\displaystyle N=-\Big(\frac{i\beta\vec{\alpha}\cdot\vec{p} }{2mc}\Big)\, f\Big(\frac{|\vec{p}|}{mc}\Big)\)

  • Prove that \begin{equation} \exp(iN) = \cos\big(\frac{|\vec{p}|f}{2mc} \big) + \frac{\beta\vec{\alpha}\cdot\vec{p}}{|\vec{p}|} \sin \big(\frac{|\vec{p}|f}{2mc} \big), \end{equation} where \(H\) is Dirac Hamiltonian \(H=c\vec{\alpha}.\cdot\vec{p} + \beta mc^2\)
  • Find the real function \(f\) such that \begin{equation} H{'} = e^{iN} H e^{-iN} \end{equation} is free of operators odd operators. For this choice of \(f\) \[ H{'} = \beta c \sqrt{|\vec{p}|^2 + m^2c^2}.\]
shivahcu's picture 22-02-04 21:02:54 n

[QUE/QFT-06011] QFT-PROBLEM

Node id: 4371page

Write the transformation properties of free Dirac field of under a Lorentz boost by velocity \(vec{v}=v(0,0,1)\). Show that the Dirac wave function for a particle with momentum \(\vec{p}=p(0,0,1)\) and mass \(m\) can be obtained by applying an appropriate boost on wave function for a particle at rest. Demonstrate this only for positive energy solution with spin along \(z\)-axis

shivahcu's picture 22-02-04 21:02:35 n

[QUE/QFT-06010] QFT-PROBLEM

Node id: 4370page

Verify that free Dirac Lagrangian is invariant under phase transformation \begin{equation*} \psi(x) \longrightarrow \psi{'}(x) = e^{i\alpha}\psi(x). \end{equation*} Find the corresponding conserved quantity \(Q\). For \(\tt classical Dirac field \), express it in terms of \(a^{(r)}(p),a^{(r)\dagger}(p), b^{(r)}(p)\) and \(b^{(r)\dagger}(p)\), and show that \begin{equation} Q = \sum_{r=1}^2 \int \Big(\frac{M}{E_p}\Big) d^3p \big\{a^{(r)}(p)a^{(r)\dagger}(p) + b^{(r)\dagger}(b^{(r)}(p) \big\} \end{equation} Notation is same as Gasiorowicz, {\it Elementary Particle Physics}, John Wiley and Sons, New York (1966).

shivahcu's picture 22-02-04 09:02:02 n

[QUE/QFT-06009] QFT-PROBLEM

Node id: 4369page

Let \(n^\mu\) be a spacelike four vector satisfying \(n^\mu n_\mu=-1\), show that

  • the eigenvalues of \(\gamma_5n\!\!\!/ \) are \(\pm1\).
  • \((\gamma_5 n\!\!\!/)^2 =1\)
  • If \(p^\mu n_\mu=0\), \(p\!\!\!/\) commutes with \(\gamma_5 n\!\!\!/ \)
  • Free particle solutions \(u(p)\) and \(v(p)\) of Dirac equation \[ (p\!\!\!/ -M )u(p)=0, \qquad (p\!\!\!/  + M)v(p)=0\] can also be taken to be eigenvectors of \(\gamma_5 n\!\!\!/   \)  
shivahcu's picture 22-02-04 09:02:19 n

[QUE/QFT-06008 QFT-PROBLEM

Node id: 4368page

Consider an electron in a uniform and constant magentic field \(\vec{B}\) along the \(z-\)axis. Obtain the most general four component positive energy eigennfunctions. Show that the energy eigenvalues are given by \[ E= \sqrt{m^2c^4 + c^2p_3^2 + 2ne\hbar c|\vec{B}|}\] with \(n=0,1,2,...\). List all the constants of motion.

shivahcu's picture 22-02-04 09:02:18 n

[QUE/QFT-06004] QFT-PROBLEM

Node id: 4364page

Does there exist an invertible matrix \(S\) such that \[ S \gamma_\mu S^{-1} = \gamma_\mu'\] where \[\gamma_1'= \gamma_2\gamma_3, \quad \gamma_2'=\gamma_3\gamma_1, \quad \gamma_3'= \gamma_1\gamma_2, \gamma_4'=\gamma_5\gamma_4?\]

shivahcu's picture 22-02-04 09:02:08 n

[QUE/QFT-06007] QFT-PROBLEM

Node id: 4367page

Show that under time reversal \(\bar{u}(p) \to u(—p)B \) and \(v(p) \to \bar{v}(—p) B\). Use this to show that under \(P T\) together \[\bar{u}(p{'}) \gamma_{\alpha_1} \gamma_{\alpha_2}\ldots \gamma_{\alpha_n} u(p) \to \bar{u}(p)\gamma_{\alpha_n}\gamma_{\alpha_{n-1}}\ldots \gamma_{\alpha_1} u(p{'}) \]

shivahcu's picture 22-02-04 09:02:34 n

[QUE/QFT-06006 QFT-PROBLEM

Node id: 4366page

Let \(p^\mu\) be a time like momentum vector. Let \(n^\mu\) be a four vector such that \begin{equation} n^\mu p_\mu=0, \text{ and } n^\mu n_\mu=-1. \end{equation} How many such independent four vectors \(n^\mu\) exist? How that the operators \begin{equation} \Pi^\pm_n =\frac{1}{2}\big(1\pm \gamma_5 n\!\!\!{n}\big) \end{equation} are projection operators satisfying. \begin{equation} \Pi^{(+)2}_n = \Pi^{(-)2}_n = I, \qquad \Pi^{(+)}_n \Pi^{(-)}_n =0. \end{equation} The notation here is same as in Bjorken and Drell, Gasiorowicz.

shivahcu's picture 22-02-04 09:02:59 n

[QUE/QFT-06005] QFT-PROBLEM

Node id: 4365page

Let \(a_{\mu\nu} \) give the Lorentz transformation \[x'^{\mu}=a_{\mu\nu} x^\nu.\] Show that there exists an invertible matrix \(S\) such that \[S\gamma_\mu S^{-1}= a_{\mu\nu}\gamma^\nu . \]

shivahcu's picture 22-02-04 09:02:18 n

[QUE/QFT-06003] QFT-PROBLEM

Node id: 4354page

 $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}\newcommand{\dd}[2][]{\frac{d#1}{d#2}}${}$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}${}$\newcommand{\ket}[1]{|#1\rangle}$ {} $\newcommand{\bra}[1]{\langle #1|}$
Compute the matrix element \[ \matrixelement{s,\vec{q}}{J_\mu(x)}{r,\vec{p}}\] % where \(J_\mu(x)\) is the current for a Dirac particle and \( \ket{s,\vec{q}}\) and \(\ket{r,\vec{p}} \) denote one particle states of spin half particle with spin and momenta as specified.

shivahcu's picture 22-02-04 09:02:09 n

[QUE/QFT-06002] QFT-PROBLEM

Node id: 4353page

For a real free Dirac field, mass \(m\), compute \[ \matrixelement{0}{\psi(x)\psi(y)}{\vec{p},r; \vec{q},s}\] and show that the result is properly anti-symmetrized wave function for two identical fermions with momenta \(\vec{p},r;\vec{q},s\) and spins \(r,s\). Here \(\ket{\vec{k}, \vec{q}}\) is the state with two fermions with momenta \(\vec{p}, \vec{q}\) and spins \(r,s\).

shivahcu's picture 22-02-04 09:02:20 n

[QUE/QFT-06001] QFT-PROBLEM

Node id: 4352page
  • [] Let \(\Gamma\) denote a product of Dirac matrices. Define \(\widetilde{\Gamma}\) by \begin{equation*} \bar{u}(s,q) \widetilde{\Gamma}u(r,p) = (\bar{u}(r,p)^\dagger\Gamma u(s,q))^* . \end{equation*}
  • Use the above definition of \(\widetilde{\Gamma}\) and show that \[\widetilde{\Gamma} = \gamma_0 \Gamma^\dagger \gamma_0. \]
  • Show that
    • \vspace{-3mm}
    • \(\widetilde{\gamma^\mu} = \gamma^\mu \) 
    • \(\widetilde{\gamma_5} = -\gamma_5\) 
    • \(\widetilde{\gamma^\mu \gamma_5}= - \gamma^\mu \gamma_5\)
  • Compute \(\widetilde{\sigma}_{0k}\) and \(\widetilde{\sigma}_{ij}\) and hence show that \(\widetilde{\sigma}_{\mu\nu}=\sigma_{\mu\nu}\)
shivahcu's picture 22-02-04 09:02:54 n
 
X