Notices
 

Browse & Filter

For page specific messages
For page author info
Enter a comma separated list of user names.
7 records found.
Operations
Title+Summary Name Datesort ascending

[QUE/QFT-01]

Node id: 3536page
  1. Write the Lagrangian for free Schrodinger field and obtain an expression for the Hamiltonian.
  2. Using the Poisson bracket form of equations of motion show that the Galilean boost \[\int d^3 x\psi^\dagger (m~x+ it \hbar \nabla)\psi,\] is a conserved quantity. How do you interpret this conservation law?
kapoor's picture 22-04-07 20:04:30 n

[QUE/QFT-01002]

Node id: 4003page

Compute infinitesimal variations of the Lagrangian density for the Schrodinger field under the Galilean transformation \begin{equation} \vec{x} \longrightarrow \vec{x}{'} = \vec{x} + \vec{v} t \end{equation} and \begin{equation} \psi(\vec{x}) \longrightarrow \psi{'}(\vec{x}\,{'}) = e^{-im\vec{v}\,^{{'}\,2} t/(2\hbar)} e^{im\vec{v}\cdot\vec{x}/\hbar} \psi(\vec{x}). \end{equation} Verify that the the change in Lagrangian is a total time derivative. Find the corresponding constant of motion.

shivahcu's picture 22-03-12 18:03:31 n

[QUE/QFT-01005] QFT-PROBLEM

Node id: 4323page

The equation of motion of free Schrodinger field obey the equation \begin{equation} i\hbar \dd[\psi]{t} = -\frac{\hbar^2}{2m}\nabla^2 \psi . \end{equation} The Green function of this equation obeys the partial differential equation \begin{equation} i\hbar \dd{t}G(x,x{'}; t,t{'}) + \frac{\hbar^2}{2m}\nabla^2 G(x,x{'}; t,t{'})= \delta(x-x{'})\delta(t-t{'}) . \end{equation} Taking Fourier transform of the above equation, and using suitable contour in the complex plane show that the retarded Green function is given by \begin{equation} G(x,x{'}; t,t{'}) = \Big(\frac{m}{2\pi i \hbar (t-t{'})}\Big)^{1/2} \exp\left(\frac{im(x-x{'})^2}{2\hbar{(t-t{'})}}\right)\theta(t-t{'}). \end{equation}

shivahcu's picture 22-02-06 19:02:15 n

[QUE/QFT-01004] QFT-PROBLEM

Node id: 4322page

For second quantized Schrodinger field, show that the Galilean boost \[\int d^3 x\psi^\dagger (m~x+ it \hbar \nabla)\psi,\] is a conserved quantity. How do you interpret this conservation law?

shivahcu's picture 22-02-06 19:02:14 n

[QUE/QFT-01003] QFT-PROBLEM

Node id: 4321page

Compute inifinitesimal variations of the Lagrangian density for the Schrodimmger field under the Galiniean transformation \begin{equation} \vec{x} \Longrightarrow \vec{x}{'} = \vec{x} + \vec{v} t \end{equation} and \begin{equation} \psi(\vec{x}) \Longrightarrow \psi{'}(\vec{x}) = e^{-im\vec{v}\,^{{'}\,2} t/(2\hbar)} e^{im\vec{v}\cdot\vec{x}/\hbar} \psi(\vec{x}). \end{equation} Verfiy that the the change in Lagrangian is a total time derivative. Find the corresponding constant of motion.

shivahcu's picture 22-02-06 19:02:03 n

[QUE/QFT-01002] QFT-PROBLEM

Node id: 4320page

Compute infinitesimal variations of the Lagrangian density for the Schrodinger field under the Galilean transformation \begin{equation} \vec{x} \longrightarrow \vec{x}{'} = \vec{x} + \vec{v} t \end{equation} and \begin{equation} \psi(\vec{x}) \longrightarrow \psi{'}(\vec{x}{'}) = e^{-im\vec{v}\,^{\prime\,2} t/(2\hbar)} e^{im\vec{v}\cdot\vec{x}/\hbar} \psi(\vec{x}). \end{equation} Verify that the the change in Lagrangian is a total time derivative. Find the corresponding constant of motion.

shivahcu's picture 22-02-06 19:02:03 n

[QUE/QFT-01001] QFT-PROBLEM

Node id: 4002page

$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$
$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
$\newcommand{\ket}[1]{|#1\rangle}$
$\newcommand{\bra}[1]{\langle #1|}$
$\newcommand{\Lsc}{\mathscr L}$

Question

  • Write the Lagrangian for free Schrodinger field and obtain an expression for the Hamiltonian.
  • Using the Poisson bracket form of equations of motion show that the Galilean boost \[\vec{G}[\psi]=\int d^3 x\, \psi^\dagger (m\,\vec{x}+ it \hbar \nabla)\psi,\] is a conserved quantity. How do you interpret this conservation law?

Solution

 We use the notation \(x=(x_1,x_2,x_3)\).

  • The Lagrangian density is given by \[\Lsc = i\hbar\psi^\dagger (x,t) \dot{\psi}(x,t) - \frac{\hbar^2}{2m}|\nabla\psi(x)|^2 \] The momentum canonically conjugate to the field \(\psi(x,t)\) is \begin{equation*} \pi(x,t) = \pp[\Lsc]{\dot{\psi}}= i\hbar \dot{\psi}^\dagger \end{equation*} Therefore the Hamiltonian density is \begin{eqnarray}\nonumber H &=& \int d^3x \pi(x,t) \dot{\psi}(x,t) -\int d^3x \Lsc\\ &=& \frac{\hbar^2}{2m}\int d^3x |\nabla\psi(x,t)|^2. \\ &=& \frac{-i\hbar}{2m}\int d^3x (\nabla\pi)(\nabla\psi) \end{eqnarray}
  • The Galilean boost is given to be \begin{eqnarray} {G_k}[\psi,\pi] &=& \int d^3x \frac{1}{i\hbar} \pi(x,t)(m x_k +it\hbar\partial_k ) \psi(x,t) \end{eqnarray} Hence the time derivative of the boost \(G_k\) is given by \begin{eqnarray}\nonumber \dd[G_k]{t} &=& \int d^3x\, \pp[G_k]{t} +\big\{G_k, H\}_\text{PB}\\\label{EQ04} &=& =\big\{G_k,H\big\} + \int d^3x\, [\pi(x)\partial_k \psi(x)]. \end{eqnarray} We now compute the Poisson bracket \(\big\{G_k, H\}_\text{PB}\). \begin{eqnarray}\nonumber \big\{G_k, H\}_\text{PB} &=& -\frac{i\hbar}{2m}\int d^3x\, \big\{\nabla\pi(x,t), H\big\}_\text{PB}(mx_k +it\hbar\partial_k) (\partial_k\psi(x,t)) \\\label{EQ05} && -\frac{i\hbar}{2m}\int d^3x\, (\nabla\pi(x,t)) (mx_k +it\hbar\partial_k )\big\{\nabla\psi, H\big\}_\text{PB} \end{eqnarray} Now we use the Poisson brackets \begin{eqnarray}\nonumber \big\{\pi(x), H\big\}_\text{PB} &=& -\frac{i\hbar}{2m}\int d^3y\big\{\pi(x), (\nabla\pi)(\nabla \psi)\}_\text{PB}\\\nonumber & =& -\frac{i\hbar}{2m}\int d^3y (\nabla \pi(y))(-1)\nabla_y \delta^{(3)}(x-y)\\ &=& \frac{-i\hbar}{2m}\nabla^2 \pi(x)\\\nonumber \big\{\psi(x), H\big\}_\text{PB} &=&-\frac{i\hbar}{2m}\int d^3y\big\{\psi(x), (\nabla\pi)(\nabla \psi)\}_\text{PB} \\\nonumber &=& -\frac{i\hbar}{2m}\int d^3y \nabla_y\delta^{(3)}(x-y)(\nabla \psi(y)) \\ &=&\frac{i\hbar}{2m}\nabla^2 \psi(x) \end{eqnarray} Therefore the Poisson bracket \(\big\{G, H\big\}_\text{PB}\), \eqRef{EQ05}, is given by \begin{eqnarray}\nonumber \big\{G_k, H\big\}_\text{PB} &=& -\frac{1}{2m} \int d^3x\Big\{ (\nabla^2\pi)(mx_k+ it\hbar \partial_k) \psi + \big(mx_k +it\hbar\partial_k\big)\nabla^2\psi\Big\}\\\label{EQ12} &=& \frac{it\hbar}{2m}\int d^3x (\nabla^2\pi(x))(\partial_k\psi(x))-(\pi(x)) \nabla^2\partial_k\psi(x))\\\nonumber && \qquad - \frac{1}{2}\int d^3x \Big((\nabla^2\pi(x))(x_k \psi(x)) - (x_k \pi(x)) (\nabla^2\psi(x))\Big) \\ \label{EQ13} \end{eqnarray} Integrating by parts and, as we shall show below, discarding surface terms we get \begin{eqnarray}\label{EQ15} \big\{G_k, H\big\}_\text{PB} = - \int d^3x\, [\pi(x)\partial_k \psi(x)]. \end{eqnarray} Using \eqRef{EQ04} and \eqRef{EQ15} we get \(\dd[G]{t}=0.\) Therefore \(G\) is constant of motion.

Proof of \eqRef{EQ15
It is easy to see that the expression\eqRef{EQ12} is a total divergence. In fact \begin{eqnarray} \frac{it\hbar}{2m}\lefteqn{\int d^3x (\nabla^2\pi(x))(\partial_k\psi(x))-(\pi(x)) \nabla^2\partial_k\psi(x))}\\ &=&\frac{it\hbar}{2m} \int d^3x \nabla\Big((\nabla\pi(x))(\partial_k\psi)-(\pi(x))(\nabla\partial_k \psi(x))\Big) \end{eqnarray} which becomes surface term on using divergence theorem and hence is zero. % Therefore the Poisson bracket, \eqRef{EQ13}, becomes \begin{eqnarray} \big\{G,H\big\}_\text{PB}= - \frac{1}{2}\int d^3x \Big((\nabla^2\pi(x))(x_k \psi(x)) - (x_k \pi(x)) (\nabla^2\psi(x))\Big)\label{EQ17} \end{eqnarray} Next we use divergence theorem to integrate both the terms by parts and discard the surface term, we get \begin{eqnarray}\nonumber \lefteqn{ \int d^3 x (\nabla^2\pi(x))(x_k\psi(x))}\\\nonumber &=&- \int d^3x (\nabla\pi(x)) \nabla(x_k\psi(x))\\ &=&- \int d^3x (\nabla_k\pi(x)) \psi(x)) + (\nabla\pi(x))x_k(\nabla\psi(x))\label{EQ18} \end{eqnarray} and \begin{eqnarray}\nonumber \lefteqn{\int d^3 x (x_k\pi(x))(\nabla^2\psi(x))} \\\nonumber &=& -\int d^3x \nabla(x_k\pi(x))(\nabla\psi(x))\\ &=& -\int d^3x \pi(x) \nabla_k \psi(x) + (\nabla\pi(x)) x_k(\nabla\psi(x)) \label{EQ19} \end{eqnarray} Therefore from \eqRef{EQ17}, we get \begin{eqnarray}\nonumber \big\{G,H\big\} &=& \frac{1}{2}\int d^3x \big\{(\nabla_k\pi(x))(\psi(x)) - \pi(x) \nabla_k\psi(x)\big\}\\\label{EQ20} &=& \frac{1}{2}\int d^3x\nabla_k[\pi(x)\psi(x)] -\int d^3x [\pi(x) \nabla_k \psi(x)] \\ &=& -\int d^3x [\pi(x) \nabla_k \psi(x)] \end{eqnarray} where the last term in \eqRef{EQ20} becomes zero on integration by parts.

shivahcu's picture 22-02-06 19:02:59 n
 
X