Notices
 

[NOTES/EM-02003]-Electric Field due to Continuous Charge Distributions

For page specific messages
For page author info

Electric field due to several charge distributions, listed in the table of contents, is computed using Coulomb’s law.

In the following cases we compute the electric field using Coulumb's law ;

1. Field due to a line charge

The charge per unit length is defined as $\lambda$. Electric field is calculated
at different points P as shown in figures.

 

Field at an arbitrary point P:

\begin{eqnarray} \vec{E}_x&=&\int\frac{\lambda dx}{4\pi\epsilon_0R^2}(-\sin \theta)\\ \label{eq1} \vec{E}_y&=&\int\frac{\lambda dx}{4\pi\epsilon_0R^2}(\cos\theta) \label{eq2} \end{eqnarray} Integrating the two components using ; $x=dtan\theta$ , $ R=d\sec\theta$ and $dx=d\sec^2\theta d\theta$ \begin{eqnarray} \nonumber\vec{E}_x&=&\int_{\alpha}^{\beta}\frac{\lambda d\sec^2\theta}{4\pi\epsilon_0d^2\sec^2\theta}(-\sin \theta)d\theta\\ \nonumber&=&\frac{\lambda}{4\pi\epsilon_0d} \int_{\alpha}^{\beta}(-\sin \theta)d\theta\\ \vec{E}_x&=&\frac{\lambda}{4\pi\epsilon_0d} (\cos\beta - \cos\alpha)\\ \label{eq3} \vec{E}_y&=&\frac{\lambda}{4\pi\epsilon_0d} (\sin \beta - \sin \alpha) \label{eq4} \end{eqnarray}

Field at a point at a point on the bisector:

Here $\beta=-\alpha$ and $\sin \alpha=\frac{L}{\sqrt{d^2+d^2}}$ . Therefore \begin{eqnarray} \vec{E}_y&=&\frac{\lambda }{2\pi\epsilon_0d}\frac{L}{\sqrt{d^2+d^2}} \label{eq5}\\ \vec{E}_x&=&0 \label{eq6} \end{eqnarray}

Field due to an infinite line charge

In this case \(\alpha=-\pi/2. \beta=\pi/2\). Therefore the electric field at a distance \(d\) is \begin{equation} E_y = \frac{\lambda}{2\pi\epsilon_0 d}. \end{equation} This agrees with \(L\to \infty\) limit of \eqRef{eq5}

2. Uniformly charged loop

The radius of the loop is $ r_0$. Electric field is calculated at a point on the axis of the loop at a distance z. \begin{eqnarray} \vec{E}_z&=&\int\frac{\lambda dl}{4\pi\epsilon_0 R^2}(\cos\alpha) \label{eq7} \end{eqnarray}


From the figure ; $dl=r_0d\phi$ , $ \cos\alpha=\frac{z}{R}$ and $R=\sqrt{z^2+r_0^2}$\\ \begin{eqnarray} \nonumber\vec{E}_z&=&\int\frac{\lambda r_0 d\phi}{4\pi\epsilon_0 (z^2+r_0^2)}(cos\alpha)=\frac{\lambda z r_0}{4\pi\epsilon_0 (z^2+r_0^2)^{3/2}}\int d\phi\\ \nonumber&=&\frac{\lambda z r_0}{4\pi\epsilon_0 (z^2+r_0^2)^{3/2}}2\pi \\ \vec{E}_z&=&\frac{qz}{4\pi\epsilon_0(z^2+r_0^2)^{3/2}} \label{eq8} \end{eqnarray} where $q=2\pi r_0\lambda$ = total charge on the ring.\\ For large z \begin{eqnarray} \vec{E}_z\rightarrow\frac{q}{4\pi\epsilon_0z^2} \label{eq9} \end{eqnarray}

3. Uniformly charged disc

The surface charge density of the disc is defined as $\sigma$. Electric field is $\vec{E}_z$ is defined as the field due to the annular ring between r and r+dr. \begin{eqnarray} \vec{E}_z=\frac{dq z}{4\pi\epsilon_0(z^2+r^2)^{3/2}} \label{eq10} \end{eqnarray} Here ; $dq=\sigma 2\pi r dr=\frac{Q}{\pi a^2}2\pi r dr = \frac{2Q}{a^2}r dr$\\

Therefore \begin{eqnarray} \nonumber\vec{E}_z&=&\frac{2Qz}{a^2 4\pi\epsilon_0}\int_0^a\frac{r dr}{(z^2+r^2)^{3/2}}\\ \nonumber&=&\frac{2Qz}{a^2 4\pi\epsilon_0}[-(z^2+r^2)^{-1/2}]_0^a\\ \nonumber&=&\frac{2Qz}{a^2 4\pi\epsilon_0}[-(z^2+r^2)^{-1/2}+\frac{1}{z}]\\ &=&\frac{2Qz}{a^2 4\pi\epsilon_0}[1-\frac{z}{(z^2+r^2)^{1/2}}]\\ \label{eq11} \end{eqnarray}For $z>>a$ \begin{eqnarray} \nonumber\vec{E}&=&(\frac{2Q}{4\pi\epsilon_0a^2})\frac{a^2}{2z^2}\\ \vec{E}&=&\frac{Q}{4\pi\epsilon_0z^2} \label{eq12} \end{eqnarray}

 

4. Thin spherical shell

The charge density of the shell is defined as $\sigma$.We know that the field due to a ring for a point on the axis of the ring at a distance \(z\) is ; \begin{eqnarray} \vec{E}_z&=&\frac{qz}{4\pi\epsilon_0(z^2+r_0^2)^{3/2}} \label{eq13} \end{eqnarray} Now, we need to compute the electric field due to a thin spherical shell at a point P. Consider a ring shaped slice between planes perpendicular OP at a distance \(x\) and \(dx\) as shown in the figure.This slice is a ring of radius $r_0$lying between angles $\theta$ and $\theta+d\theta$.\\ From the figure, let $x=acos\theta$ , $r_0=acos\theta$ and $z=r-acos\theta$\\

Therefore; \begin{eqnarray} \nonumber r_0^2+z^2&=&a^2\sin ^2\theta + (r-a\cos\theta)^2\\ &=&r^2+a^2-2ar\cos\theta \label{eq14} \end{eqnarray} charge enclosed in the ring of radius $r_0$ \begin{eqnarray} \nonumber q&=&ad\theta 2\pi a \sin \theta \sigma\\ \nonumber&=&\frac{Q}{4\pi a^2}a^2 \sin \theta\, d\theta 2\pi\\ q&=&\frac{Q}{2}a^2 \sin \theta\, d\theta \label{eq15} \end{eqnarray} Therefore electric field along OP at P is; using $t=cos\theta$

\begin{eqnarray} \nonumber\vec{E}&=&\frac{1}{4\pi\epsilon_0}\int_0^{\pi}\frac{Q\sin \theta d\theta(r-a\cos\theta)}{2(r^2+a^2-2arcos\theta)^{3/2}}\\ \nonumber&=&\frac{Q}{4\pi\epsilon_0}\int_{-1}^{1}\frac{dt (r-at)}{2(r^2+a^2-2art)^{3/2}}\\ \nonumber&=&\frac{1}{2}\frac{Q}{4\pi\epsilon_0}\int_{-1}^{1}\frac{1}{r}\frac{ r^2-atr}{(r^2+a^2-2art)^{3/2}}dt \end{eqnarray} \begin{eqnarray} \nonumber&=&\frac{1}{2r}\frac{Q}{4\pi\epsilon_0}\int_{-1}^{1} \frac{r^2+\frac{1}{ 2}(r^2+a^2-2atr)-\frac{1}{2}(r^2+a^2)}{(r^2+a^2-2art)^{3/2}}dt\\ \nonumber&=&\frac{1}{2r}\frac{Q}{4\pi\epsilon_0}\int_{-1}^{1} [\frac{1}{2}\frac{ % % (r^2-a^2)}{(r^2+a^2-2art)^{3/2}}dt+\frac{1}{2} \frac{(dt)}{(r^2+a^2-2art)^{1/2}}] \\ \nonumber&=&\frac{1}{2r}\frac{Q}{4\pi\epsilon_0}[\frac{1}{2}\frac{(r^2-a^2)}{ ar(r^2+a^2-2art)^{3/2}} - \frac{1}{2ar}(r^2+a^2-2art)^{1/2}]_{-1}^{+1} \label{eq16} \end{eqnarray}

Case $r>a$:

\begin{eqnarray} \nonumber\vec{E}&=&\frac{1}{2ar}\frac{Q}{8\pi\epsilon_0}[\frac{(r^2-a^2)}{r-a} - (r-a)- \frac{r^2-a^2}{r+a} + (r+a)]\\ \nonumber&=&\frac{1}{2ar}\frac{Q}{8\pi\epsilon_0}[(r+a) - (r-a)- (r-a)+ (r+a)]\\ &=&\frac{Q}{4\pi\epsilon_0r^2} \label{eq17} \end{eqnarray}

Case $r<a$
\begin{eqnarray} \nonumber\vec{E}&=&\frac{1}{2ar}\frac{Q}{8\pi\epsilon_0}[\frac{(r^2-a^2)}{a-r} - (a-r)- \frac{r^2-a^2}{r+a} + (r+a)]\\ \nonumber&=&\frac{1}{2ar}\frac{Q}{8\pi\epsilon_0}[-(r+a) - (a-r)- (r-a)+ (r+a)]\\ &=&0 \label{eq18} \end{eqnarray}

5. Examples

We will compute the electric field at a points \(P\) and \(Q\) due to charges \(-Q, Q\) at points \(A,B\) respectively as shown in the figure. We will consider the limit when the field points are a much large distance,\(r>>d\), from the charges.
Field due to two charges at \(\pm Q\)}

1. Find the electric field at the point \(P\), \(OP=r\), in the figure.

\begin{eqnarray} \nonumber\vec{E}_P&=&\frac{1}{4\pi\epsilon_0}[\frac{q}{(r-d/2)^2}-\frac{q}{ (r+d/2)^2}]\\ \nonumber&=&\frac{q}{4\pi\epsilon_0}[\frac{(r+d/2)^2-(r-d/2)^2}{ (r-d/2)^2(r+d/2)^2}]\\ &=&\frac{q}{4\pi\epsilon_0}\frac{2rd}{(r^2-d^2/4)^2} \label{eq19} \end{eqnarray} When $r>>d$ we get \begin{eqnarray} \vec{E}_P\rightarrow\frac{1}{4\pi\epsilon}\frac{2qd}{r^3} \label{eq20} \end{eqnarray} $\vec{E}_P$ is along the positive \(x\) axis.\\

2. What \(r\) dependence do you expect for a system of charges as shown in the figure?

\begin{eqnarray} \vec{E}_Q=2E\sin \alpha \label{eq21} \end{eqnarray} E= magnitude of $\vec{E}$ due to charge q at Q \begin{eqnarray} E&=&\frac{q}{4\pi\epsilon_0}\frac{1}{r^2+d^2/4}\\ \label{eq22} \nonumber\vec{E}_Q&=&\frac{2q}{4\pi\epsilon_0}\frac{1}{r^2+d^2/4}\frac{d/2}{ (r^2+d^2/4)^{1/2}}\\ &=&\frac{qd}{4\pi\epsilon_0 (r^2+d^2/4)^{3/2}} \label{eq23} \end{eqnarray} Defining $p=qd$ as the dipole moment of the charge system, \begin{eqnarray} \vec{E}_P&=&\frac{p}{4\pi\epsilon_0 (r^2-d^2/4)^{3/2}} \label{eq24} \end{eqnarray} if $r>>d$ \begin{eqnarray} \vec{E}_P&=&\frac{2p}{4\pi\epsilon_0 r^3} \label{eq25} \end{eqnarray} Similarly, \begin{eqnarray} \vec{E}_Q&=&\frac{p}{4\pi\epsilon_0 (r^2+d^2/4)^{3/2}} \label{eq26} \end{eqnarray} if $r>>d$ \begin{eqnarray} \vec{E}_Q&=&\frac{2p}{4\pi\epsilon_0 r^3} \label{eq27} \end{eqnarray}

Exclude node summary : 

n

4727:Diamond Point

0
 
X