Notices
 

[NOTES/CM-04002] Poisson Bracket Formalism

For page specific messages
For page author info

We define Poisson bracket and the Hamiltonian equations of motion are written in terms of Poisson brackets. The equation for time evolution of a dynamical variable is written in terms of Poisson brackets. It is proved that a dynamical variable \(F\), not having explicit time dependence, is constant of motion if its Poisson bracket with the Hamiltonian is zero.

Poisson Bracket 

We introduce Poisson bracket of two dynamical variables by
\begin{equation}\Label{EQ03} \{F,G\}_{PB}\stackrel{\text{def}}{\equiv}\sum_k\Big( \frac{\partial{F}}{\partial{q_k}}\frac{\partial{G}}{\partial{p_k}}-\frac{ \partial{F}}{\partial{p_k}} \frac{\partial{G}}{\partial{q_k}}\Big ) \end{equation}
{Fundamental Poisson brackets}
It is straight forward to verify that the variables $q_k,p_k$ satisfy the Poisson bracket relations \begin{equation}\Label{EQ15} \{q_i,q_j\}_{PB}=0 ;~~~~~~~~~~ \{p_i,p_j\}=0 \end{equation} \begin{equation}\Label{EQ16} \{q_i,p_j\}_{PB}=\delta_{ij} \end{equation}

Equations of motion in Poisson bracket form
The Hamiltonian equations of motion are
\begin{equation}\Label{EQ01}
\boxed{\frac{\partial{H}}{\partial{p_k}}= \dot q_k, \qquad \frac{\partial{H}}{\partial{q_k}}=-\dot p_k}.
\end{equation}
These equations of motion can be written in the Poisson bracket form
\begin{equation}\Label{EQ01A}
\boxed{ \dot q_k=\frac{\partial{H}}{\partial{p_k}}=, \qquad\dot p_k \frac{\partial{H}}{\partial{q_k}}}.
\end{equation}

Time variation of a dynamical variable

Let $F(q,p,t)$ be a dynamical variable. We compute the equation of motion giving the time evolution of \(F(q,p,t)\):
\begin{eqnarray}\nonumber
\frac{d}{dt}F(q,p,t)
&=& \frac{\partial{F}}{\partial{t}}+\sum_k
\frac{\partial{F}}{\partial{q_k}}\dot q_k
+\frac{\partial{F}}{\partial{p_k}}\dot p_k\\
&=& \frac{\partial{F}}{\partial{t}}+\sum_k\Big(
\frac{\partial{F}}{\partial{q_k}}\frac{\partial{H}}{\partial{p_k}}-\frac{
\partial{F}}{\partial{p_k}}\frac{\partial{H}}{\partial{q_k}}\Big)\Label{EQ02}
\end{eqnarray}
\eqref{EQ02} can then be written as
\begin{equation}
\boxed{ \dd[F(q,p,t)]{t} = \frac{\partial{F}}{\partial{t}}+\{F,H\}_{PB}}
\end{equation}

Constant of motion

If a dynamical variable \(F\) does not depend on time explicitly, we have \begin{equation}
\frac{dF}{dt}= \{F,H\}_{PB}.
\end{equation}
Therefore, if the dynamical variable has zero Poisson Bracket with Hamiltonian $H$,
\begin{equation}
\frac{dF}{dt}=0.
\end{equation}
Thus we have an important result that $F(q,p)$ is a constant of motion if its Poisson bracket of \(F(q,p)\) with the Hamiltonian vanishes.

Exclude node summary : 

n
0
 
X