Notices
 
For page specific messages
For page author info

PRO/VS-02007

Consider the set of all vectors \(\xi=(\xi_1,\xi_2,\xi_3)\) in \(C^3\) for which

  1. \(\xi_1\) is real
  2. \(\xi=0\)
  3. \(|\xi_1|> 0\)
  4. either \(\xi_1\) or \(\xi_2\) equal to zero
  5. \(\xi_1+\xi_2=0\)
  6. \(\xi_1+\xi_2=1\)


Give the dimensions of the vector spaces wherever appropriate and give a possible basis?

Exclude node summary : 

n

4727:Diamond Point

0
 
X