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Abstract

One of the important requirements is that a document contain no black boxes. The

mathematical details are all made available right in the document. This does away

with the need for having pen pencil and paper while learning something. You may sit

back and read in a relaxed fashion.

However there is danger that one might loose sight of logical connections between

different parts of an article. For easy identification and to demarcate the algebraic and

routine computational details in a transparent fashion, it proposed to try out a format

in which the extra details are supplied in an “Anti-Black-BoX” through scanned

hand written notes merged as images.

The reader has a choice of going through the details, or leaving them out completely

without a loss of continuity.

This sample also tests stating known results from other places with a gray back-

ground. This facilitates reading of the article without referring to any other reference.

The “Recall-BoX” tells the you the results in a precise form, which you may, gener-

ally, remember but may not be able to state very precisely. Repeated encounters with

such “‘Recall Boxed Statements” and should help you in

• identifying and remembering the results;

• being aware of interconnections between different results.

§1 Introduction

A derivation of Planck’s law of black body radiation will be presented. I suppose you have
come across Planck’s law of black body radiation. It is a well known graph that flashes in
my mind when ever any one mentions black body radiation or Planck’s law.

There are several questions that you need to settle before we get onto derivation. The
X- axis of the plot is of course the frequency of radiation.

But what exactly does y− coordinate represent ? Is it intensity ? intensity of what? Is
it energy ? energy of what? Or is it something else? How does one measure this

What is a black body? Is it a cavity enclosing radiation? Does the answer depend on
the geometry of the cavity? Does it depend on the material of the cavity walls? If not what
tells you that it does not?

OK it is energy density for a given frequency of photons. The answer is independent of
cavity properties can be proved using second law of thermodynamics.

Tell me what measurement have to be carried out to get information about energy density
(≡ energy /volume) in a small range, ω to ω+ dω, of frequency? Are you not keen to know
the answers of these questions. Search your favourite books and see which book provides
the answer.
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A whole lot of similar questions can be asked about Maxwellian distribution of velocities
in gases at temperature T . How does one verify this famous, successful result of kinetic
theory? Are interested? Find out for yourself.

§2 The Partition Function for Photons

Let us first recall what is going to be used in the derivation?

1. The radiation is treated as a gas (collection) of non-interacting particles.

2. The microstates of a photon gas are specified by a giving a numbers ν1, ν2, ν3 · · · for
energy levels ǫ1, ǫ2, ǫ3, · · · . One set of these values {νr(j)} specifies a micro state of
the system. A sum over all micro states means summation over all possible values of
νr which are all non-negative integers.

3. For every frequency, the photons have two polarizations. and energy of a micro state
is given by

E =
∑

j

∑

r

νr(j)ǫr (1)

The sum over j represents the sum over all and the sum over r is sum over all single
particle states (orbitals).

4. Boltzmann distribution the probability of a system having energy E when it is kept
at temperature T is the Boltzmann factor Ξj = exp(−βνrǫr) ≡ P(ν∇). Here {ǫr|r =
1, 2, 3, · · · } denote the single particle energies, where Ξr is the partition function

Ξr =

∞
∑

νr(j)=0

exp(−βνr(j)ǫr) (2)

= 1 + e−βǫr + e−2βǫr + e−3βǫr + · · · (3)

=
1

1− exp(−βǫr)
. (4)

Here the sum is over all possible single particle state occupation numbers, 0,1,2,3, (for
bosons) for state r.

5. The average number of particles < nr > in a single particle state with energy ǫr can
be see to be given by

< nr >=
∑

j

νr(j) exp(−βǫr) (5)

For a derivation of result see Details in ABBox1.
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Box.1 Details of Eq.(5)

§3 Now Photons

Now let us ask ourselves what are the single particle energies ǫr for a gas of photons in
cavity at temperature T ? The A photon with frequency ω has energy ~ω. Here the index
r is replaced by continuous variable ω. We must now count the number of photon states in
the frequency range ω and ω+ dω inside a cavity of volume V . Notice for momentum range
p to p+ dp and volume V the number of states is

2×
V

(2π~)3
= 2×

V

(2π~)3
4πp2dp (6)

Here a factor of 2 has been included because photons have two states of polarization. Noting
the energy momentum relation p = E/c = ~ω/c, the above expression can be rearranged as

2×
V

(2π~)3
4πp2dp =

(8πV )

(2π~)3

(

~

c

)3

ω2dω =
V ω2dω

π2c3
(7)

Therefore the number of photons in the frequency range ω and ω + dω is given by

Nω =
V ω2dω

π2c3
1

exp(β~ω)− 1
. (8)
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Hence the energy of the radiation in this frequency range is

E − ω = Nω~ω. (9)

If u(ω) stands for energy per unit volume per unit frequency range, then the above expression
is equal to u(ω)dωV , giving

u(ω) =
~ω3

π2c3(exp(β~ω)− 1)
. (10)
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