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§1 Inner Product in Vector Spaces

From now onwards all the vector spaces we deal are complex vector spaces of finite dimension

unless mentioned otherwise.

Definition 1 Norm of a vector f in a vector space V is a real number ‖f‖ satisfying the

following properties.

∗1) ‖f‖ ≥ 0, and, ‖f‖ = 0 if and only if f = 0.

∗2) ‖αf‖ = |α|‖f‖

∗3) ‖f + g‖ ≤ ‖f‖+ ‖g‖ ( Triangle Inequality )

Q:Is norm a linear functional !? WHY ?

Definition 2 An inner product ( or scalar product ), denoted by (f, g), in a complex vector

space V is a complex valued function of the ordered pair of vectors f, g ∈ V such that

⋆1) (f, f) ≥ 0, and (f, f) = 0 iff f = 0

⋆2) (f, g) = (g, f)∗

⋆3) (f, α1g1 + α2g2) = α1(f, g2) + α2(f, g2)

⋆4) (α1f1 + α2f2, g) = α∗

1(f1, g) + α∗

2(f, g)

We shall not discuss real vector spaces with inner product.

Examples Of Properties Of Inner Product

The property ⋆4) can be proved from ⋆2) and ⋆3). Thus we have

(α1f1 + α2f2, g) = [(g, α1f1) + (g, α2f2)]
∗ (1)

= [α1(g, f1) + α2(g, f2)]
∗ (2)

= α∗

1(g, f1) + α∗

2(g, f2) (3)

Using the property ⋆2) once again we get the desired result:

(α1f1 + α2f2, g) = α1(f1, g) + α2(f:2, g)

We shall now prove two important identities.

Parallelogram Identity

‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 + ‖g‖2) (4)
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Polarization Identity

4(f, g) = ‖f + g‖2 − ‖f − g‖2 + i‖f − ig‖2 − i‖f + ig‖2 (5)

PROOF :

‖f + g‖2 = (f + g, f + g) = (f, f) + (f, g) + (g, f) + (g, g) (6)

‖f − g‖2 = (f − g, f − g) = (f, f)− (f, g)− (g, f) + (g, g) (7)

‖f − ig‖2 = (f − ig, f − ig) = (f, f)− i(f, g) + i(g, f) + (g, g) (8)

‖f + ig‖2 = (f + ig, f + ig) = (f, f) + i(f, g)− i(g, f) + (g, g) (9)

Adding Eq.(6) and Eq.(7) gives the parallelogram identity. In a similar fashion taking Eq.(6) -

Eq.(7) + i⊗Eq.(8) - i⊗ Eq.(9) gives the polarization identity.

Relating Norm and Inner Product In a vector space with an inner product if we define

‖f‖ =
√

(f, f),

then ‖f‖ has all the properties of the norm. The two properties (1) and (2) of the norm are

automatically satisfied. The third property, viz., the triangle inequality will be proved below

after the proof of Cauchy Schwarz inequality.

Conversely, if a norm is defined in a complex vector space we ask: ”can we introduce a norm

such that the relation is maintained?” The answer is YES if and only if the norm satisfies the

parallelogram identity. The right hand side of the polarization identity can then be taken as the

definition of inner product. The result will satisfy all the axioms for the inner product.
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§2 Orthogonality and Gram Schmidt Procedure

Definition 3 We say that two vectors f and g are orthogonal if (f, g) = 0

LEMMA : If g 6= 0 then the vector

x = f −
(g, f)

(g, g)
g

is orthogonal to g.

Proof :

Consider

(g, x) = (g, f −
(g, f)

(g, g)
g) = (g, f)−

(g, f)

(g, g)
(g, g) (10)

= (g, f)− (g, f) = 0 (11)

Therefore, g is orthogonal to x = f −
(g, f)

(g, g)
g.

Definition 4 Two vectors f and g are orthogonal if (f, g) = 0.

Definition 5 A set of vectors X is an orthogonal set if ∀ pair x, y ∈ X, we have (x, y) = 0.

Definition 6 A set of vectors X is called orthonormal set if

(a) for every pair x, y ∈ X we have (x, y) = 0 and

(b) for every x ∈ X we have ‖x‖ = 1.

Definition 7 A set {x1, x2, ..., xr} is an orthonormal set iff (xi, xj) = δij .

Definition 8 An orthonormal set is called a complete orthonormal set if it is not contained

in any larger orthonormal set.

Theorem 1 An orthogonal set X = {x1, x2, ..xr} of non-zero vectors is linearly independent.

Proof : Consider

α1x1 + α2x2 + ...+ αrxr = 0 (12)

Taking scalar product with x1 gives zero for all terms except the first one. Thus

α1(x1, x1) = 0 ⇒ α1 = 0 (13)

(∵ x1 6= 0 ⇒ (x1, x1) 6= 0). (14)
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Remark : Earlier we have seen that the vector h = f − λg is orthogonal to the vector g if λ

is taken to be (g, f)/(g, g). The following theorem generalizes this result to orthogonal sets.

Theorem 2 If U = u1, u2, ..., un is any finite orthogonal set containing nonzero vectors of an

inner product space and if λk = (uk, x)/(uk, uk), then the vector h defined by

h = f − λ1u1 − λ2u2 − ...− λkuk

is orthogonal to every element uk in the set U

The result follows easily by taking the scalar products (h, uk) for different k.

Grahm Schmidt Orthogonalization Procedure

Let X = {x1, x2, . . . , xr} be a linearly independent set. Then one can construct a set of vectors

E = {e1, e2, ....er} such that the vectors ek are linear combinations of the vectors in X and the

set E is an orthonormal set.

Proof:

Define

u1 =x1, e1 = u1/‖u1‖

u2 =x2 − (e1, x2)e2, e2 = u2/‖u2‖

u3 =x3 − (e1, x3)e3 − (e2, x3)e2, e3 = u3/‖u3‖

ur =xr −

r−1
∑

k=1

(ek, xr)ek, er = ur/‖ur‖

It is easily verified that {e1, e2, ...} is an o.n. set.

Bessel’s Inequality

If U = u1, u2, ..., ur is any finite orthonormal set in an inner product space then for all x ∈ V we

have
∑

k

|(uk, x)|
2 ≤ ‖x‖2 ( Bessel Inequality ) (15)

Proof :

For every vector y , we have (y, y) ≥ 0. Therefore, taking y to be

y = x−
∑

k

λkuk with uk = (uk, x).
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we get

(y, y) = (x−
∑

k

λkuk, x−
∑

j

λjuj) (16)

= (x, x) −
∑

k

λ∗

k(uk, x)−
∑

j

λj(x, uj) +
∑

j

∑

k

λ∗

kλj(uj , uk) (17)

= (x, x) −
∑

k

λ∗

k(uk, x)−
∑

j

λj(x, uj) +
∑

k

λ∗

kλk (18)

One of two the summations in the last term has been done using (uj , uk) = δjk. Substituting

λj = (uj , x) we get

(y, y) = (x, x) −
∑

(x, uk)(uk, x)−
∑

(uj , x)(x, uj) +
∑

(x, uj)(uj , x) (19)

= (x, x) −
∑

k

(x, uk)(uk, x) (20)

= (x, x) −
∑

k

|(uk, x)|
2 (21)

Using (y, y) ≥ 0 we get the desired Bessel’s inequality.

∑

k

|(uk, x)|
2 ≤ ‖x‖2 (22)
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§3 Cauchy Schwarz and Triangle Inequalities

Cauchy Schwarz Inequality

As a preparation we first prove an intermediate result.

Theorem 3 If f is a given vector and g 6= 0 be any vector ‖f − λg‖ is minimum when λ = λ0

where

λ0 =
(f, g)∗

‖g‖2
=

(g, f)

(g, g)

and the minimum value of ‖f − λg‖ is given by

‖f − λg‖min = ‖f‖2 − |(f, g)|2/‖g‖2

Proof:

Let F (λ) = ‖f − λg‖2. We compute F (λ) , write it as function of the real and imaginary parts

of λ(≡ α+ iβ) and minimize F (λ) w.r.t. α and β.

F (λ) = ‖f − λg‖2 (23)

= (f − λg, f − λg) (24)

= (f, f)− λ(f, g)− λ∗(g, f) + ‖λ‖2(g, g) (25)

Substituting λ = α+ iβ we get

F (λ) = (f, f)− α[(f, g) + (g, f)] + iβ[(g, f) − (f, g)] + (α2 + β2)(g, g)

Note that the right hand side has to be real. WHY ?! Setting

∂F

∂α
= 0, and

∂F

∂β
= 0

we get

−(f, g)− (g, f) + 2α(g, g) = 0 (26)

i(g, f)− i(f, g) + 2β(g, g) = 0 (27)

(28)

hence

α = [(f, g) + (g, f)]/2(g, g) (29)

β = i[(f, g) − (g, f)]/2(g.g) (30)

(31)

This gives the desired value λ0 corresponding to the minimum of F (λ) as

λ0 = α+ iβ =
(g, f)

(g, g)
=

(f, g)∗

(g, g)

and the minimum value of F (λ0) is then computed to be

F (λ)|min = (f, f)− |(f, g)|2/(g, g)
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Theorem 4 (Cauchy Schwarz Inequality) Let f, g ∈ V. Then

|(f, g)| ≤ ‖f‖ ‖g‖

The equality holds if and only if f and g are linearly dependent.

Proof :If f = 0 or g = 0, the equality holds trivially and there is nothing to prove because

both sides are zero. Therefore, we assume g 6= 0. Consider x = f − λg. Then we have ‖x‖ ≥ 0

for all values of λ. We find the minimum of ‖x‖ and set it ≥ 0

min ‖x‖2 ≥ 0

Using the previous result ‖x‖2 = ‖f − λg‖2 is minimum when λ is equal to (g,f)
(g,g) (≡ λ0) and

minimum value of ‖x‖2 = ‖f − λg‖2 is given by

min ‖x‖2 = (f, f)−
|(f, g)|2

(g, g)

Thus we get

(f, f)−
|(f, g)|2

(g, g)
≥ 0

or

(f, f)(g, g) ≥ |(f, g)|2

which is just the desired Cauchy Schwarz inequality

|(f, g)| ≤ ‖f‖ ‖g‖.

Note that when the Cauchy Schwarz inequality becomes equality min‖x‖2 = 0. This is possible

if and only if x = 0 for λ = λ0. This gives f − λ0g = 0 which means that f and g are linearly

dependent.

Triangle Inequality

We are now in a position to prove the triangle inequalities

‖f + g‖ ≤ ‖f‖+ ‖g‖

‖f − g‖ ≤ ‖f‖+ ‖g‖

Proof : Consider

‖f + g‖2 = (f + g, f + g) (32)

= (f, f) + (g, g) + (f, g) + (g, f) (33)

= (f, f) + (g, g) + 2Re(f, g) (34)

≤ ‖f‖2 + ‖g‖2 + 2|(f, g)|[∵ Rez ≤ |z|] (35)

Using the Cauchy Schwarz inequality we get

‖f + g‖2 = ‖f‖2 + ‖g‖2 + 2‖f‖‖g‖ (36)

= [‖f‖+ ‖g‖]2 (37)

∴ We get the desired inequality

‖f + g‖ ≤ ‖f‖ + ‖g‖
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