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Lesson-1 Groups and Fields

Lesson Overview

Syllabus Groups, Fields

Lesson Objectives You will learn definition of group and field with some
examples and counter examples.

Prerequisite Basic set theory, binary operation

References

1. Halmos P. R. Finite Dimensional Vector Spaces Springer Verlag, East
West Edition (1974).

2. Fraleigh J. B. A First Course in Abstract Algebra, Pearson Education
Limited, Essex, (2014).

§1.1 Recall :: Binary Operation

We will not construct the real numbers from rationals. We take real num-
bers as undefined objects which satisfy certain axioms. Starting from these
axioms, all familiar properties can be proved.

The axioms for real number system come in three groups.

1. The Field axioms

2. The Order axioms

3. The Completeness axiom, or the least upper bound axiom.

We assume that the set R of real numbers is given to us and also given to us
is a set P ∈ R of positive reals. We also assume that two binary operations
+ and · are defined. We assume that P,R + and · satisfy the following
relations.

THE FIELD AXIOMS For all x, y, z ∈ R, we have

(A1) x+ y = y + x;

(A2) (x+ y) + z = x+ (y + z);

(A3) ∃0 ∈ R s.t. x+ 0 = x,∀x ∈ R;

(A4) For each x ∈ R, there exists a v ∈ R s.t. x+ v = 0.
Such a v is called ‘additive inverse’ of x and is denoted by −x;

(A5) x · y = y · x, ∀x, y ∈ R;

(A6) (x · y)z = x(y · z), ∀x, y, z ∈ R

(A7) ∃ 1 ∈ R s.t. 1 6= 0 and x.1 = x, ∀x ∈ R;

(A8) ∀x ∈ R, x 6= 0, there exists w ∈ R s.t. xw = 1;
w will be called multiplicative inverse of x;

(A9) Distributive law: x(y + z) = xy + zx.
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B. AXIOM OF ORDER The subset P of positive real numbers satisfies
the following axioms.

(B1) x, y ∈ P ⇒ x+ y ∈ P;

(B2) x, y ∈ P ⇒ x.y ∈ P;

(B3) x ∈ P ⇒ −x /∈ P;

(B4) x ∈ R ⇒ x = 0, or x =/∈ P, or x ∈ P

i.e. R = −P ∪ {0} ∪ P, where −P is the set {x : −x ∈ P}.

Using the above axiom, the familiar properties of order relation < can be
proved, if we define

x < y to mean y − x ∈ P.

Thus we have
(B1) ⇒ x < y and z < w ⇒ x+ z < y +w;
(B2) ⇒ 0 < x < y and 0 < z < w ⇒ xz < yw
(B4) ⇒ If x ∈ R, y ∈ R, only one of the following holds .

x < y, or x = y, or y < x.
The last axiom given below the most important one.

C. COMPLETENESS AXIOM or THE LEAST UPPER BOUND
AXIOM Every nonempty set of real numbers which has an upper bound
has a least upper bound.

§1.2 Groups

Definition 1 To every ordered pair 〈a, b〉 of elements of a set X a binary
operation assigns an element, denoted by a ∗ b, of the set X . For a binary
operation to be a valid one it must be defined for all pairs and the a ∗ b must
belong to the set and the result of binary operation must be unique.

Definition 2 A group is a pair 〈G, ∗〉 with a binary operation ∗ defined on
a set G such that the following properties.

(G-1) Associative property : a ∗ (b ∗ c) = (a ∗ b) ∗ c ∀ a, b, c ∈ G

(G-2) Existence of identity : ∃ an element e ∈ G such that

e ∗ a = a ∗ e = a ∀ a ∈ G.

(G-3) Existence of inverse : ∀ a ∈ G there exists an element a′ such that

a ∗ a′ = a′ ∗ a = e

Examples Of Groups

1. The set of all real numbers R forms a group with addition as the binary
operation.

2. The set of all complex numbers C is a group with addition as group
operation.
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3. The set of all positive, non-zero, real numbers R+ is a group with
respect to multiplication as group operation.

4. The set of all N ×N real ( or complex ) matrices form a group under
matrix addition.

5. The group of all N ×N real (or complex) matrices with determinant
6= 0 form a group under the matrix multiplication.

§1.3 Fields

Definition 3 A field F is a triple 〈F ,+, ·〉, where, · and + are two binary
operations defined on a set F such that the axioms (F-I) to (F-III), given
below, are satisfied. The elements of the field will be called scalars and will
be denoted by greek letters α, β, γ, . . . .

(F-1) To every pair α, β the scalar α + β is called the sum of α, β which
satsifies the following axioms ∀α, β, γ ∈ F

(i) α+ β = β + α

(ii) α+ (β + γ) = (α+ β) + γ

(iii) ∃ a unique scalar 0 such that 0 + α = α = α+ 0

(iv) ∀α ∈ F ∃ a unique scalar (−α) ∈ F we have α+ (−α) = 0

These properties imply that F is a group with + as binary operation.

(F-2) The scalar α·β will be called the product of α, β and has the following
properties.

(i) Commutative Property : α · β = β · α

(ii) Associative Property : α · (β · γ) = (α · β) · γ

(iii) Existence of multiplicative identity : ∃ a unique scalar 1 such
that

α.1 = 1.α = α

(iv) ∀α 6= 0 ∃ a scalar denoted by α−1 such that α ·α−1 = α−1 ·α = 1

(F-3) The sum and the product obey the distributive property :

α · (β + γ) = α · β + α · γ

Examples Of Fields

1. Set of all rational numbers Q is a field with usual addition and multi-
plication as the two binary operations.

2. Set of all real numbers R is a field with usual addition and multiplica-
tion as the two binary operations.

3. Set of all complex numbers C is a field with usual addition and mul-
tiplication as the two binary operations.

4. The set Z+ of all positive integers is not a field with the usual addition
and multiplication as two binary operations ( give all possible reasons).

5. The set Z of all integers is not a field with the usual addition and
multiplication. ( Give one reason ).
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Lesson-2 Vector Spaces and Subspaces

Lesson Overview

Syllabus Vector Spaces; Subspace of a vector space

Prerequisites Basic set theory; Groups and fields

Lesson Objectives To define vector space and subspace; to illustrate the
definitions with examples and counter examples.

References

1. Halmos P. R. Finite Dimensional Vector Spaces Springer Verlag, East
West Edition (1974).

2. Fraleigh J. B. A First Course in Abstract Algebra, Pearson Education
Limited, Essex, (2014).

§2.1 Vector Spaces

Definition 4 Let F be a field and + be a binary operation defined on a

set V. The triple 〈V,+,F〉 is a vector space on a field F if the following

properties are satisfied.

(V-1) To every pair of vectors f, g ∈ V , there corresponds a vector f + g

∈ V called the sum of f and g such that

(i) f + g = g + f ∀ f, g ∈ V

(ii) f + (g + h) = (f + g) + h ∀ f, g, h ∈ V

(iii) ∃ a unique vector 0 ∈ V such that

f + 0 = f ∀ f ∈ V

(iv) To every vector f ∈ V, there corresponds a vector −f ∈ V such

that

f + (−f) = 0

(V-2) ∀ α ∈ F and f ∈ V there corresponds a unique vector αf ∈ V such

that

α(βf) = (αβ)f ∀ α, β ∈ F

and

1.f = f ∀f ∈ V

(V-3) ∀α, β ∈ F and ∀f, g ∈ V we have

(α+ β)f = αf + βf

and

α(f + g) = αf + αg
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Examples Of Vector Spaces

(I) 1. Every field F is also a vector space over F as field of scalars.

Thus we have the following important special examples of vector

spaces.

2. Set of all complex numbers C is a complex vector space with C

as the field of scalars.

3. Set of all real numbers R is a real vector space with R as the field

of scalars.

4. Set of all rational numbers Q is a rational vector space with Q as

the field of scalars.

(II) Set of all n-tuples (α1, α2, ..., αn) where αk ∈ F is denoted by Fn.

This set is vector space with F as field of scalars. Thus

1. Cn is a complex vector space over C as the field of scalars.

2. Rn is a real vector space over R as the field of scalars.

3. Qn is a rational vector space over Q as the field of scalars.

(III) 1. All polynomials in a variable t, with coefficients in any field F is

vector space P.

P = {p(t)|p(t) = α0 + α1t+ α2t+ ...+ αnt
n + ...and αj ∈ F}

Here F can be any of the fields such as C,R,Q, . . .

2. Consider the set P of all polynomials in a variable t, with coeffi-

cients in any field F and consider the subset PN consisting of all

polynomials of degree ≤ N . Then PN is a vector space.

(IV) 1. Let F be set of all functions defined on an interval [a, b] and

having complex values. With any one of the fields C,R, or Q, F

is a vector space.

2. Let F be as in (IV-1) and C(0) be the subset of all continuous

functions. Then C(0) is a vector space.

3. Let F be as in (IV-1) and C(r) be the subset of all functions for

which r− derivatives exist and are continuous on [a, b]. The C(r)

is a vector space.

4. Let C(0) be as in (IV-2). Let S be a subset of C(0) consisting of

those functions which vanish at a given point x0.Then S is vector

space. In general, if one can takes all functions which vanish at

x1, x2, . . . , xn then also we get a vector space.

(V) Let MN be the set of all N × N matrices whose element are scalars

from a field F . With standard matrix addition as vector addition MN

is a vector space over the same field F

(VI) The set of all functions f on an interval [a, b], for which
∫ b

a
|f(x)|p dx

is finite, is a vector space denoted by Lp[a, b]. That addition of two

6



functions in Lp[a, b] gives back a function in the same space will not

be proved here. The space Lp[a, b], for p = 2, is the set of all square

integrable functions on the interval [a, b].

(VII) The set of all infinite sequences (α1, α2, . . . , ..), such that the infinite

series
∞∑

k=1

|αk|
p

converges, is a vector space denoted by ℓp. That the sum of two

sequences, α, β ∈ ℓp is also in ℓp, space requires a proof which will not

be given here.

(VIII) A set {0}, consisting of only one element, the null vector, is a vector

space over any field.

§2.2 Subspaces

Definition 5 Let V be a vector space over a field F . Let S be a subset of

V. Let the vector addition in S be defined in the same way as in V. If S is

also vector space over the same field F , we say that S is subspace of V.

Examples Of Subspaces

1. Every vector space V is subspace of itself.

2. The subset having only the null vector, 0, is a subspace of every vector

space.

3. Let V1 be the vector space of complex numbers over the field of real

numbers. Let V2 be the vector space of all real numbers with R as the

field of scalars. The V2 is a subspace of V1.

4. The set C(1) of functions with continuous first derivative is a subspace

of the vector space of all continuous functions with the same field of

scalars.

5. Let C(0)[a,b] be the set of all continuous complex valued functions on

the interval [a, b]. This set is a vector space and we have

(a) the subset consisting of of all functions which vanish at a given

point x0 is a subspace.

(b) the subset of C(0) consisting of all functions having value 1/2 at

a point x0 is not a subspace.

(c) The set of all solutions of a linear differential equation

a0(x)
dny

dxn
+ a1(x)

dn−1y

dxn−1
+ . . . + y(x) = 0

is a vector space.

6. Consider the set of all vectors in three dimensions, R3 which is real

vector space. The subset S1 of all vectors which are multiples of a

fixed vector ~A and the subset S2 of all vectors in a given fixed plane

passing through the origin, and are two examples of subspaces of R3.
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It is easy to see that intersection of two subspaces of a vector space is again

a subspace.
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Lesson-3 Linear Independence and Basis

Lesson Overview

Syllabus Linear independence, basis, dimension

Lesson Objectives You will learn definition of linear independence, basis
and dimension.

Prerequisite Definition of Vector spaces

§3.1 Linear independence

Definition 6 A set of vectors S = {f1, f2, ...fn} is called linearly depen-
dent set if ∃ a set of scalars α1, α2, . . . such that not all α’s are zero and

α1f1 + α2f2 + · · ·+ αnfn = 0

Definition 7 A set of vectors S = {f1, f2, ...fn} is called linearly inde-
pendent set if it is not a linearly dependent set. This means that a set X
is linearly independent if

α1f2 + α2f2 + · · ·+ αnfn = 0

implies α1 = α2 = · · · = 0.

Definition 8 Let {f1, f2, ..., fm} be a finite set of vectors in vector space V.
Let α1, α2, . . . , αm be a set of scalars and f ∈ V be such that

f = α1f1 + α2f2 + · · ·+ αmfm

Then we say that f is linear combination of the vectors f1, f2, . . . , fm.

Properties of linearly independent set

1. If f ∈ V is a linear combination of {f1, f2, . . .}, then the scalars αi in

f =
∑

αifi

are uniquely determined if and only if {f1, f2, . . .} is a independent
set.

2. If {fi} is a linearly independent set, a necessary and sufficient condition
that f ∈ V be a linear combination of {fi} is that the set {f, fi} be
linearly dependent.

3. Every set of vectors containing a linearly dependent set is also linearly
dependent.

Definition 1 A vector space is called finite dimensional if ∃ an integer N
such that every set containing more than N elements is a linearly dependent
set.
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§3.2 Basis and dimension

Definition 9 A set of vectors X is called a basis in a vector space V if the
following two properties are satisfied.

• the set X is a linearly independent set, and

• every vector f ∈ V is a linear combination of vectors in X, i.e.,

f = α1x1 + α2x2 + ...+ αnxn

where xk ∈ X for all k = 1, 2, . . . , n.

Examples of Basis

1. Vectors {~i,~j,~k} form a basi s for the set of all vectors in three dimen-
sion.

2. Any three vectors

3. Any three vectors which are not coplanar form a basis in the space of
vectors in three dimension.

4. {1, x, x2, ..., xN} is a basis in the space of all polynomials of degree N.

5. The set
⋃

n {cosnx, sinnx}, where n = 1, 2, 3, ..., is a basis in space of
all periodic functions on [−π, π] with period 2π.

6. The vectors E = e1, e2, ..., eN where

e1 = (1, 0, 0, ..., 0) ; e2 = (0, 1, 0, ...0) ; .... eN = (0, 0, 0, ..., 1)

form a basis in the vector space CN . This basis will be called the
canonical basis or the standard basis.

7. The vectors E = {e1, e2, ..., eN} also form a basis in RN and in QN .

Theorem 1 (Number of Elements in a Basis) The number of elements
in any one basis is equal to number of elements in every other basis.

Definition 10 For a finite dimensional space the number of elements in a
basis is defined to be the dimension of the vector space.

Summary of Properties of Bases

Given that a vector space V has dimension N we have the following proper-
ties.

1. Every set containing N+1 or more vectors is a linearly dependent set.

2. A set of N vectors is a basis if and only if it is linearly independent.

3. A set of N vectors X is a basis iff every vector in V is linear combi-
nation of vectors in the set

X.

Definition 11 Let S = {f1, f2, . . . , fm} be subset of a vector space. The
linear span of S is the set of all vectors f such that f is linear combination
of vectors f1, f2, . . . , fm ∈ S. Linear Span of S = {f |f =

∑m
k=1 αkfk} and

fk ∈ V and αk ∈ V }
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Lesson-4 Linear Functional, Dual Vector Space

Lesson Overview

Syllabus Linear functional; Dual vector space

Lesson Objectives You will learn definition of linear functionals and that
the set of all linear functionals is a vector space called the dual vector space.

Prerequisite Definition of Vector spaces

§4.1 Linear functional

Definition 12 A linear functional on a vector space is a mapping from
the vector space to the field of scalars :

Ψ : f 7→ Ψ(f) ∈ F

such that Ψ is linear:

Ψ(αf + βg) = αΨ(f) + βΨ(g)

Examples of functionals

1. The functional which assigns 0 ∈ F to every vector is a linear func-
tional.

2. In Cn let x = (ξ1, ξ2, ..., ξn) and Ψ(x) defined by

Ψ(x) = α1ξ1 + α2ξ2 + . . .+ αnξn

is a linear functional where αk ∈ C.

3. In the function space L2[a, b] given fL2[a, b] define a functional Ψ by

Ψ(f) =

∫ b

a

g∗(x)f(x)dx,

for a fixed g ∈ L2[a, b], then Ψ is linear functional.

4. For f ∈ Rn the functional Φ1 and Φ2 defined below are not linear
functionals. Let f = (α1, α2, ..., αn) and

Φ1(f) =
∑

k

|αk|; Φ2(f) =
∑

k

|αk|
2

5. Given a vector x0, we define a functional Ψ0 by

Ψx0
(f) =

{
1 if f = x0

0 if f 6= x0
(1)

It is easy to check that the functional Ψ(x0) is a linear functional.

6. In the vector space, R3, of all real vectors in 3 dimension a linear
functional can be defined as follows.

Choose a vector ~X ∈ R3 and define a functional ΨX by

ΨX( ~A) = ~X · ~A, ∀ ~A ∈ R3
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Equality of two functionals: Two linear functionals Ψ and Φ on a vec-
tor space V are said to be equal if Ψ(f) = Φ(f), ∀f ∈ V.

§4.2 Dual vector space

Dual Vector Space

We will now define twin operations involving linear functionals and scalars
(i) addition of two linear functionals and
(ii) multiplication of a linear functional by a scalars

Given two arbitrary linear functionals Ψ and Φ, their sum Ψ + Φ is
defined by giving its action on an arbitrary vector f ∈ V as

(Ψ + Φ)f = Ψ(f) + Φ(f).

The sum of two linear functionals is again a linear functional. Given a scalar
α and a linear functional Ψ, multiplication of linear functional by scalar α,
(αΨ) is defined by

(αΨ)(f) = αΨ(f)

and the product αΨ is again a linear functional. Then we have the following
result:

Theorem 2 The set of all linear functional on a vector space V forms a
vector space. This vector space is called vector space dual to V and is
denoted by Ṽ.

The proof is easy. We need to verify that sum of two linear functionals
and multiplication of a linear functional by a scalar result in linear function-
als. The proof is obvious. Still let us write it down.

Checking linearity of Ψ1 +Ψ2: Let Ψ1,Ψ2 be two linear functionals.
Consider Φ = α1Ψ1 + α2Ψ2, then for all f ∈ V

(α1Ψ1 + α2Ψ2)f = (α1Ψ1)(f) + (α2Ψ2)(f) (2)

= α1Ψ1(f) + α2Ψ2(f). (3)

It can be proved that the dimension of a vector space dual to V is equal
to the dimension of the vector V space itself. Remember that every vector
space has a basis. So we can ask for a basis for the dual vector space. A
useful construction of a basis in the dual space starts with a basis B in the
vector space, and the basis obtained will be called basis dual to B.

Definition 13 Dual Basis: Let B = x1, x2, . . . , xN ⊂ V be a basis. Let
linear functionals Ψ1,Ψ2, . . . be defined, (as in Eq.(1)), by

Ψ1(f) =

{
1 if f = x1

0 if f 6= x1
(4)

Ψ2(f) =

{
1 if f = x2

0 if f 6= x2
(5)

etc. In general, we have

Ψk(f) =

{
1 if f = xk

0 if f 6= xk
(6)

where k = 1, 2, · · · , N . Then you can check that Ψk is a basis in the dual
vector space. It is called basis dual to the chosen basis B.
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The definition of dual basis can be summarized as in the table given
below.

x1 x2 ... xk ... xN

Ψ1 1 0 ... 0 ... 0
Ψ2 0 1 ... 0 ... 0
... 0 0 ... 0 ... 0
Ψk 0 0 ... 1 ... 0
... 0 0 ... 0 ... 0
ΨN 0 0 ... 0 ... 1

(7)

Prove it now: Show that the dual basis as defined as above is in fact a
basis by proving the two properties, linear independence and spanning the
whole space, that a basis must have.

)||(Short Examples 1 (Dual Basis) In the vector space R3, given a basis
{ ~A, ~B, ~C} the set of vectors

~a =
~b× ~c

|~b× ~c|
, ~b =

~c× ~a

|~c× ~a|
, ~c =

~a×~b

|~a×~b|
. (8)

define linear functionals in the sense of <Example 5> on page 12.

Remark: The dual of dual of vector space V is the vector space V itself.
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Lesson-5 New Vector Spaces from Old

Lesson Overview

Syllabus Sum of subspaces; Quotient spaces; Tensor product of vector
spaces.

Lesson Objectives You will learn construction of new vector spaces from
a given set of vector spaces.

Prerequisite Definition of Vector spaces; Equivalence relation

References

1. Halmos P. R. Finite Dimensional Vector Spaces Springer Verlag, East
West Edition (1974).

2. Fraleigh J. B. A First Course in Abstract Algebra, Pearson Education
Limited, Essex, (2014).

§5.1 Sum of subspaces

Definition 14 If M,N are two subspaces of a vector space V, the sum of

the subspaces M,N is defined as the the linear space spanned by M∪N. This

space will be denoted by M+N.

The subspace M+N is same as the set of all vectors of the form f +g where

f ∈ M and g ∈ N. If f ∈ M + N, then f will be of the form x + y where

x ∈ M and y ∈ N. However, in general, x and y will not be determined

uniquely by f . The decomposition will be unique if and only if the two

subspace are disjoint, i.e., M ∩ N = {0}. In such a case we shall use the

notation M⊕N.

)||(Short Examples 2 Given a vector space V and a subsace M, in general,

there are several subspaces N such that M⊕N = V and the decomposition of

V into a sum is not unique. As an example, let us take the vector space to be

R2. Here subspaces are straight lines passing through the origin. A general

element of R2 is (α, β). Let us take the subspace M to be the x− axis (α, 0),

the the subspace N can be any other line passing through the origin. Suppose

we take N to be a line with slope µ. A general element x = (α, β) ∈ V can

be trivially written as x = f + g where

f = (α− γ, 0) and g = (γ, β).

For any given µ 6= 0, the choice γ = β/µ gives g in the subspace N.
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Definition 15 Let U and V are two vector spaces over the same vector field

Let W , be the set of all ordered pairs 〈f, g〉 with f ∈ U and g ∈ V. The set

W becomes a vector space if the vector addition in W is defined by

α1〈f1, g1〉+ α2〈f2, g2〉 = 〈α1f1 + α2f2, α1g1 + α2g2〉

The vector space W so obtained is called direct sum of vector spaces U and

V and we write W = U ⊕ V.

)||(Short Examples 3 Let us take direct sum of vector spaces U = R and

V = R2 , both over field of real numbers R. General element of the two

spaces are x ∈ U and (y, z) ∈ V. The dirct sum is the set of all elements

(x, y, z) and is the three dimensional real space R3.

The dimension of the direct sum U ⊕ V is M +N where M and N are

the dimensions of the two spaces. In fact, if X = {x1, x2, . . . , xM} is a basis

in U and Y = {y1, y2, . . . , yN} is a basis in V then a basis in the direct sum

space is

{〈x1, 0〉, 〈x2, 0〉, . . . , 〈0, y1〉), 〈0, y2〉, . . . 〈0, yN 〉}.

This can be proved easily and it shows that the dimension of the direct sum

space is the sum of individual dimensions.

Let V be vector space and M be its subspace over field F . We shall define

a new vector space N such that V can be written as direct sum of M and N.

This construction is natural and a very general one.

§5.2 Quotient space

Given a vector space V and a subspace M we now introduce a relation on

vectors in V by

f ∼ g if f − g ∈ M

The relation ∼ is an equivalence relation. To show this consider

• ∀f ∈ V we have f − f = 0 ∈ M( ∵ Mis a subspace) ∴ f ∼ f

• If f ∼ g we have f − g ∈ M ⇒ g − f ∈ M ⇒ g ∼ f

• Let f ∼ g and g ∼ h , then (f − g) ∈ M and (g − h) ∈ M

It then follows that

(f − g)− (g − h) ∈ M =⇒ (f − h) ∈ M =⇒ f ∼ h

It, therefore, follows that ∼ is an equivalence relation. Every equivalence

relation on a set partitions the set into mutully disjoint classes called equiv-

alence classes. Let [f ] denote the equivalence class of the element f ∈ V.

Let the set of all these equivalence classes be denoted by Q.

It, therefore, follows that ∼ is an equivalence relation. Every equivalence

relation on a set partitions the set into mutually disjoint classes called equiv-

alence classes. Let [f ] denote the equivalence class of the element f ∈ V.
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Let the set of all these equivalence classes We now define an operation of

addition on the set Q of equivalence classes. Let The vector sum, [f ] + [g],

of two classes is defined by selecting vectors x ∈ [f ] and y ∈ [g] and taking

the equivalence class [f]+[g] to be the class containg the vector x+ y. The

result is in fact independent of the chioce of elements in the two classes [f ]

and [g]. Hence we can write

[f ] + [g] = [f + g]

Similarly, if α ∈ F and [f ] is any equivalence class, the the product α[f ] is

defined by selecting an element x ∈ [f ] and taking the equivalence class of

αx, i.e.,

α[f ] = [αx]

where x is any element of [f]. Again the result of the scalar multiplication

operation as defined above is independent of the choice of element x ∈ [f ].

Definition 16 With the operation of adding classes as above, the space Q

becomes a vector space called quotient space and will be denoted by Q =

V/M.

We leave it for the reader to verify that Q is indeed a vector space over the

same field F and that the dimension of the quotient space is N −M where

N = dim(V) and M = dim(M) .

)||(Short Examples 4 Let V be two dimensional plane R2 and M be the x-

axis, R.

Then

V = {(x, y)|x, y ∈ R}andM = {(x, 0)|x ∈ R}

The equivalence relation,f ∼ g,f ∼ g, between two vectors f = (α, β), g =

(α′, β′), means β = β′. The equivalence class, [x], of a vector x = (ξ, η)

consists of all vectors, (ξ, η), with varying ξ and a fixed η. Thus

[x] = {(ξ, η)|ξ ∈ R}

there being one class for each value of η. It is obvious that the class [x] is a

straight line parallel to the x- axis and at a distance η from it.

17



Fig. 1

In general any line,M, through the origin is a subspace.The elements of

the quotient space are the equivalence classes are which lines parallel to M

(See Fig.1) . Each of these lines is completely specified by its distance from

M. Thus the quotient space is isomorphic to the set of all real numbers. The

vetor addition of the equivalence classes in the quotient space is just the

addition of real numbers. Hence R2/M is the vector space R.

§5.3 Tensor product of vector spaces

We shall now introduce tensor product V ⊗ U of two vector spaces U and

V. The correct way of defining the tensor product is to define it is through

the space dual to the Cartesian product of the two vector spaces U and V.

We shall not describe this approach here but will be content with a ‘working’

definition only. For vectors x ∈ V and y ∈ V we formally introduce ’tensor

product’ z = x⊗ y having the following properties.

• (x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y

• x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2

• (αx) ⊗ y = α(x⊗ y)

• x⊗ (αy) = α(x⊗ y)

In general we have

(α1x1 + α2x2)⊗ (β1y1 ⊗ β2y2) = α1β1(x1 ⊗ y1) + α2β1(x2 ⊗ y1)

+α1β2(x1 ⊗ y2) + α2β2(x2 ⊗ y2) (9)
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Definition 17 Consider two vector spaces U and V of dimensions M and

N respectively. Let X = {x1, x2, · · · , xN} and Y = {y1, y2, · · · , yM} be basis

sets in the respective spaces. Let zij stand for a formal product, written as

zij = xi ⊗ yj. We regard the set {zij} as a basis of a vector space U ⊗ V.

Note that not all sets of basis have vectors of tensor product type.

)||(Short Examples 5 As an example consider the spaces PN (x),PM (y) of

all polynomials in x of degree less than or equal to N and in y of degree less

than or equal to M . The tensor product of two polynomials p(x) ∈ PN (x)

and q(y) ∈ PM (y) be defined as

p(x)⊗ q(y) = p(x)q(y)

This gives rise to the tensor product space PN ⊗ PM whose elements are all

polynomials in x, y of degree N in x and degree M in y. Give three different

basis sets in this space.

The definition of direct sum and tensor products can be extended to more

than two spaces.
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