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Lesson-1 Inner Product Spaces

Lesson Overview

Syllabus Vector spaces with inner product; Properties of inner product;

Parallelogram and polarization identities; Cauchy Schwarz and triangle in-

equalities.

Lesson Objecives To define and give examples of inner product spaces;

To prove the parallelogram and polarization identities, Cauchy Schwarz and

triangle inequalities. To give few examples.

Prerequisites Understanding of the definition of vector spaces

References

1. Halmos P. R. Finite Dimensional Vector Spaces Springer Verlag, East

West Edition (1974).

2. Fraleigh J. B. A First Course in Abstract Algebra, Pearson Education

Limited, Essex, (2014).
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§0.1 Norm and Inner Product in a Vector Space

Important: From now onward all the vector spaces we deal are complex

vector spaces of finite dimension unless mentioned otherwise.

Norm and scalar product

Definition 1 Norm of a vector f in a vector space V is a real number ‖f‖

satisfying the following properties.

(N-1) ‖f‖ ≥ 0, and, ‖f‖ = 0 if and only if f = 0.

(N-2) ‖αf‖ = |α|‖f‖

(N-3) ‖f + g‖ ≤ ‖f‖+ ‖g‖ ( Triangle Inequality )

Quick Question: Is norm a linear functional !? WHY ?

Definition 2 A scalar product, ( or inner product ), denoted by (f, g),

in a complex vector space V is a complex valued function of the ordered pair

of vectors f, g ∈ V such that

(S-1) (f, f) ≥ 0, and (f, f) = 0 iff f = 0

(S-2) (f, g) = (g, f)∗

(S-3) (f, α1g1 + α2g2) = α1(f, g2) + α2(f, g2)

(S-4) (α1f1 + α2f2, g) = α∗

1(f1, g) + α∗

2(f, g)

We shall not discuss real vector spaces with inner product.

Remark: The property (S-4) can be proved from properties (S-2) and

(S-3). Thus we have

(α1f1 + α2f2, g) = [(g, α1f1) + (g, α2f2)]
∗ (1)

= [α1(g, f1) + α2(g, f2)]
∗ (2)

= α∗

1(g, f1) + α∗

2(g, f2) (3)

Using the property (S-2) once again we get the desired result:

(α1f1 + α2f2, g) = α1(f1, g) + α2(f:2, g)
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§0.2 Parallelogram and Polarization Identities

We shall now prove two important identities.

Parallelogram Identity

‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 + ‖g‖2) (4)

The proof of the parallelogram identity is easy. We begin from the l.h.s.

‖f + g‖2 + ‖f − g‖2 = (f + g, f + g) + (f − g, f − g)

= [(f, f) + (f, g) + (g, f) + (g, g)] + [(f, f)− (f, g) − (g, f) + (g, g)]

= 2‖f‖2 + 2‖g‖2 (5)

Polarization Identity

The polarization identity is given by

4(f, g) = ‖f + g‖2 − ‖f − g‖2 + i‖f − ig‖2 − i‖f + ig‖2 (6)

Proof :

‖f + g‖2 = (f + g, f + g) = (f, f) + (f, g) + (g, f) + (g, g) (7)

‖f − g‖2 = (f − g, f − g) = (f, f)− (f, g)− (g, f) + (g, g) (8)

‖f − ig‖2 = (f − ig, f − ig) = (f, f)− i(f, g) + i(g, f) + (g, g) (9)

‖f + ig‖2 = (f + ig, f + ig) = (f, f) + i(f, g)− i(g, f) + (g, g) (10)

Adding Eq.(7) and Eq.(8) gives the parallelogram identity. In a similar fash-

ion taking Eq.(7) - Eq.(8) + i⊗Eq.(9) - i⊗ Eq.(10) gives the polarization

identity.

Defining norm from an inner product In a vector space with an inner

product if we define

‖f‖ =
√

(f, f),

then ‖f‖ has all the properties of the norm. The two properties (1) and

(2) of the norm are automatically satisfied. The third property, viz., the

triangle inequality will be proved separately.

Conversely, if a norm is defined in a complex vector space we ask: ”can

we introduce a norm such that the relation is maintained?” The answer is

YES if and only if the norm satisfies the parallelogram identity. The right

hand side of the polarization identity can then be taken as the definition of

inner product. The result will satisfy all the axioms for the inner product.

§0.3 Cauchy Schwarz and Triangle Inequalities

As a preparation we first prove an intermediate result.
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Theorem 1 If f is a given vector and g 6= 0 be any vector ‖f − λg‖ is

minimum when λ = λ0 where

λ0 =
(f, g)∗

‖g‖2
=

(g, f)

(g, g)

and the minimum value of ‖f − λg‖ is given by

‖f − λg‖min = ‖f‖2 − |(f, g)|2/‖g‖2

Proof:

Let F (λ) = ‖f − λg‖2. We compute F (λ) , write it as function of the real

and imaginary parts of λ(≡ α+ iβ) and minimize F (λ) w.r.t. α and β.

F (λ) = ‖f − λg‖2 (11)

= (f − λg, f − λg) (12)

= (f, f)− λ(f, g)− λ∗(g, f) + ‖λ‖2(g, g) (13)

Substituting λ = α+ iβ we get

F (λ) = (f, f)− α[(f, g) + (g, f)] + iβ[(g, f) − (f, g)] + (α2 + β2)(g, g)

Note that the right hand side has to be real. WHY ?! Setting

∂F

∂α
= 0, and

∂F

∂β
= 0

we get

−(f, g)− (g, f) + 2α(g, g) = 0 (14)

i(g, f) − i(f, g) + 2β(g, g) = 0 (15)

(16)

hence

α = [(f, g) + (g, f)]/2(g, g) (17)

β = i[(f, g) − (g, f)]/2(g.g) (18)

This gives the desired value λ0 corresponding to the minimum of F (λ) as

λ0 = α+ iβ =
(g, f)

(g, g)
=

(f, g)∗

(g, g)

and the minimum value of F (λ0) is then computed to be

F (λ)|min = (f, f)− |(f, g)|2/(g, g)

Theorem 2 (Cauchy Schwarz Inequality) Let f, g ∈ V. Then

|(f, g)| ≤ ‖f‖ ‖g‖

The equality holds if and only if f and g are linearly dependent.
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Proof :If f = 0 or g = 0, the equality holds trivially and there is nothing

to prove because both sides are zero. Therefore, we assume g 6= 0. Consider

x = f −λg. Then we have ‖x‖ ≥ 0 for all values of λ. We find the minimum

of ‖x‖ and set it ≥ 0

min ‖x‖2 ≥ 0

Using the previous result ‖x‖2 = ‖f − λg‖2 is minimum when λ is equal to
(g,f)
(g,g) (≡ λ0) and minimum value of ‖x‖2 = ‖f − λg‖2 is given by

min ‖x‖2 = (f, f)−
|(f, g)|2

(g, g)

Thus we get

(f, f)−
|(f, g)|2

(g, g)
≥ 0

or

(f, f)(g, g) ≥ |(f, g)|2

which is just the desired Cauchy Schwarz inequality

|(f, g)| ≤ ‖f‖ ‖g‖.

Note that when the Cauchy Schwarz inequality becomes equality min‖x‖2 =

0. This is possible if and only if x = 0 for λ = λ0. This gives f − λ0g = 0

which means that f and g are linearly dependent.

§0.4 Triangle Inequality

We are now in a position to prove the triangle inequalities

‖f + g‖ ≤ ‖f‖+ ‖g‖ (19)

‖f − g‖ ≤ ‖f‖+ ‖g‖ (20)

Proof : Consider

‖f + g‖2 = (f + g, f + g) (21)

= (f, f) + (f, g) + (g, f) + (g, g) (22)

= (f, f) + 2Re(f, g) + (g, g) (23)

≤ ‖f‖2 + ‖g‖2 + 2|(f, g)|, [∵ Rez ≤ |z|]. (24)

Using the Cauchy Schwarz inequality we get

‖f‖2 + ‖g‖2 + 2|(f, g)| ≤ ‖f‖2 + 2‖f‖‖g‖ + ‖g‖2 (25)

= [‖f‖+ ‖g‖]2 (26)

∴ We get the desired inequality

‖f + g‖ ≤ ‖f‖ + ‖g‖



1 Orthogonality

Lesson Overview

Syllabus Vector spaces with inner product; Properties of inner product;

Parallelogram and polarization identities; Cauchy Schwarz and triangle in-

equalities.

Lesson Objecives To define the concept of orthogonality of vectors.Orthognalization

of linearly independent vectors.

Prerequisites Understanding of the definition of vector spaces; concept

of inner product.

References

1. Halmos P. R. Finite Dimensional Vector Spaces Springer Verlag, East

West Edition (1974).

2. Fraleigh J. B. A First Course in Abstract Algebra, Pearson Education

Limited, Essex, (2014).
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§1.1 Orthogonality

Definition 3 We say that two vectors f and g are orthogonal if (f, g) = 0

Lemma: If g 6= 0 then the vector

x = f −
(g, f)

(g, g)
g

is orthogonal to g.

Proof: Consider

(g, x) = (g, f −
(g, f)

(g, g)
g) = (g, f)−

(g, f)

(g, g)
(g, g) (27)

= (g, f) − (g, f) = 0 (28)

Therefore, g is orthogonal to x = f −
(g, f)

(g, g)
g.

Definition 4 Two vectors f and g are orthogonal if (f, g) = 0.

Definition 5 A set of vectors X is an orthogonal set if ∀ pair x, y ∈ X,

we have (x, y) = 0.

Definition 6 A set of vectors X is called orthonormal set if

(a) for every pair x, y ∈ X we have (x, y) = 0 and

(b) for every x ∈ X we have ‖x‖ = 1.

Definition 7 A set {x1, x2, ..., xr} is an orthonormal set iff (xi, xj) = δij .

)||(Short Examples 1 (Orthonormal Sets) We will now give several ex-

amples of orthonormal sets.

(1a) In the vector space R
3, the set of unit vectors {~i,~j,~k} along the three

coordinate axes is an orthonormal set. In fact, if the coordinate axes are
rotated the unit vectors along the new axes will again from an o.n. set.

(1b) Consider the vector space C
n with inner product of two column vectors

x, y defined by x†y an o.n. set is given by

x1 =
(

1 0 0... 0
)

, x2 =
(

0 1 0... 0
)

, .... xn =
(

0 0 0... 1
)

(29)
is an o.n. set.

(1c) Consider the complex vector space of all polynomials Pn. We then have
following examples of orthonormal sets.
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1. [(i)]) With inner product of two polynomials p(t), q(t) defined as

(p, q) =

∫ ∞

−∞

p∗(t)q(t)e−t
2

dt

The set of all Hermite polynomials {H0(t), H1(t), . . . , Hn(t), . . .} is an
o.n. set.

(ii) With inner product of two polynomials p(t), q(t) defined as

(p, q) =

∫

1

−1

p∗(t)q(t) dt

The set of all Legendre polynomials {P0(t), P1(t), . . . , Pn(t), . . .} is an
o.n. set.

(iii) With inner product of two polynomials p(t), q(t) defined as

(p, q) =

∫ ∞

0

p∗(t)q(t)tνe−t dt

The set of all Laguerre polynomials {Lν

0
(t), Lν

1
(t), . . . , Lν

n
(t), . . .} is an

o.n. set.

(iv) The set of monomials {1, t, t2, t3, . . .} is not an orthonormal set with
any of the above three inner products.

⊘ The above examples clearly show that a set being o.n. set depends on
the choice scalar product.

(1d) In the vector space of square integrable functions, L2(−∞,∞), the scalar
product of two functions ψ(x), φ(x) is defined to be

(ψ, φ) =

∫ ∞

−∞

ψ∗(x)φ(x) dx

In this space the harmonic oscillator wave functions form an. o.n. set.

(1e) In the vector space of all functions defined on interval [−π, π] and satis-
fying

f(x+ 2π) = f(x)

and inner product

(f, g) =

∫

π

−π

f∗(x)g(x) dx

an orthonormal set is

1, cosx, sinx, cos 2x, sin 2x, . . . cosnx, sinnx, . . .

Definition 8 An orthonormal set is called a complete orthonormal set

if it is not contained in any larger orthonormal set.

Theorem 3 An orthogonal set X = {x1, x2, ..xr} of non-zero vectors is

linearly independent.
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Proof : Consider

α1x1 + α2x2 + ...+ αrxr = 0 (30)

Taking scalar product with x1 gives zero for all terms except the first one.

Thus

α1(x1, x1) = 0 ⇒ α1 = 0 (31)

(∵ x1 6= 0 ⇒ (x1, x1) 6= 0). (32)

Remark: Earlier we have seen that the vector h = f − λg is orthogonal

to the vector g if λ is taken to be (g, f)/(g, g). The following theorem

generalizes this result to orthogonal sets.

Theorem 4 If U = {u1, u2, ..., un} is any finite orthogonal set containing

non zero vectors of an inner product space and if λk = (uk, x)/(uk , uk), then

the vector h defined by

h = f − λ1u1 − λ2u2 − ...− λkuk

is orthogonal to every element uk in the set U

The result follows easily by taking the scalar products (h, uk) for different

k.

Remark: One can show that all the o.n. sets given above are complete.??

§1.2 Grahm Schmidt orthogonalization

Let X = {x1, x2, . . . , xr} be a linearly independent set. Then one can con-

struct a set of vectors E = {e1, e2, ....er} such that the vectors ek are linear

combinations of the vectors in X and the set E is an orthonormal set.

Proof: Define

u1 =x1, e1 = u1/‖u1‖

u2 =x2 − (e1, x2)e2, e2 = u2/‖u2‖

u3 =x3 − (e1, x3)e3 − (e2, x3)e2, e3 = u3/‖u3‖

ur =xr −

r−1
∑

k=1

(ek, xr)ek, er = ur/‖ur‖

It is easily verified that {e1, e2, ...} is an o.n. set.
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Bessel’s Inequality If U = u1, u2, ..., ur is any finite orthonormal set in

an inner product space then for all x ∈ V we have

∑

k

|(uk, x)|
2 ≤ ‖x‖2 ( Bessel Inequality ) (33)

Proof : For every vector y , we have (y, y) ≥ 0. Therefore, taking y to be

y = x−
∑

k

λkuk with uk = (uk, x).

we get

(y, y) = (x−
∑

k

λkuk, x−
∑

j

λjuj) (34)

= (x, x) −
∑

k

λ∗k(uk, x)−
∑

j

λj(x, uj) +
∑

j

∑

k

λ∗kλj(uj, uk)(35)

= (x, x) −
∑

k

λ∗k(uk, x)−
∑

j

λj(x, uj) +
∑

k

λ∗kλk (36)

One of two the summations in the last term has been done using (uj , uk) =

δjk. Substituting λj = (uj , x) we get

(y, y) = (x, x)−
∑

(x, uk)(uk, x)−
∑

(uj , x)(x, uj) +
∑

(x, uj)(uj , x)(37)

= (x, x)−
∑

k

(x, uk)(uk, x) (38)

= (x, x)−
∑

k

|(uk, x)|
2 (39)

Using (y, y) ≥ 0 we get the desired Bessel’s inequality.

∑

k

|(uk, x)|
2 ≤ ‖x‖2 (40)
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2 Complete Orthonormal Set

Lesson Overview

Syllabus Representation in an o.n. basis. Dirac notation

Lesson Objecives To explain construction of representation in an o.n.

basis; to describe the results on change of basis; to briefly explain the Dirac

notation

Prerequisites Understanding ofconcept of inner product and orthogonal-

ity; properties of a complete orthonormal set.

References

1. Halmos P. R. Finite Dimensional Vector Spaces Springer Verlag, East

West Edition (1974).

2. Fraleigh J. B. A First Course in Abstract Algebra, Pearson Education

Limited, Essex, (2014).
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§2.1 Complete orthonormal set

Theorem 5 (Orthonormal Sets) If U = {u1, u2, ..., un} is any finite o.n.

set in an inner product space having finite dimension, the following condi-

tions (P1) to (P6) on U are equivalent to each other.

(P1) The set U is complete.

(P2) If (x, uk) = 0 ∀k then x = 0.

(P3) The subspace spanned by U is whole space.

(P4) If f ∈ V then

f =
∑

k

(uk, f)uk

(P5) If f and g are in V then

(f, g) =
∑

(f, uk)(uk, g)

(P6) If x ∈ V then,

‖x‖2 =
∑

k

|(uk, x)|
2

PROOFS We shall prove that

(P1) ⇒ (P2) ⇒ (P3) ⇒ (P4) ⇒ (P5) ⇒ (P6) ⇒ (P1).

(P1) ⇒ (P2) : If ∃ a vector f such that (uk, f) = 0∀k and f 6= 0. Then the

set U ∪ f/‖f‖ would be an orthonormal set containing U. But this is

impossible because U is a complete set. Therefore, f = 0.

(P2) ⇒ (P3) : Assume that (P3) is not true. If the subspace spanned

by U is not whole space, there would exist a vector f 6= 0 such

that f is not a linear combination of elements in U. Hence g =

f −
∑

k(f, uk)uk is different from zero and is, by construction, or-

thogonal to all uk, this contradicts (P2). Thus we have proved ∼

(P3) ⇒ ∼ (P2) giving us the required result (P2) ⇒ (P3)..

Remember

One of the ways to a statement A⇒ B is to start from negation of statement
B and prove negation of statement A. This method, ∼ B ⇒∼ A, is what has
been used in the above two cases to write the proof.
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(P3) ⇒ (P4) : We are given that the subspace spanned by U is whole space.

Hence every vector is a linear combination of {fi}:

f =
∑

i

αiui.

Taking scalar product with uk and using the fact that U is o.n. set we

get αk = (uk, f). ∴ f =
∑

k(uk, f)uk.

(P4) ⇒ (P5): Let f, g be two arbitrary vectors in the vector space. The

result (4) applied to two vectors f and g gives

f =
∑

i

λiui; with λi = (ui, f) (41)

g =
∑

j

µjuj , where µj = (uj , g) (42)

The result (P5) follows by computing (f, g) using the orthogonality

properties of uk.

(f, g) =
(

∑

i

λiui,
∑

j

µjuj

)

(43)

=
∑

i

∑

j

λ∗iµj(ui, uj) (44)

=
∑

ij

λ∗iµjδij (45)

=
∑

i

λ∗iµi (46)

where, in step (45), we have used the orthogonality property (ui, uj) =

δij . This gives us the desired result

(f, g) =
∑

i

(f, ui)(ui, g) (47)

(P5) ⇒ (P6): If we set f = g = x in the result of (P5), we get (P6).

(P6) ⇒ (P1):

Recall

One of the methods, known as reduction ad absurdum, of proving A ⇒ B is
to assume that B is not true and to derive a contradiction. This is what will
be used to write this part of the the proof.

To obtain a contradiction let us assume that (P1) is not true the set U
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is not complete. Then there exists a vector h 6= 0 which is orthogonal

to all uk, (h, uk) = 0. We apply (P5)

‖x‖2 =
∑

k

|(uk, x)|
2

to x = h. The left hand side is non-zero while the r.h.s. is zero, hence

a contradiction.

This proves (P6) ⇒ (P1).

Theorem 6 If V is vector space with inner product, then there exists a

complete o.n. sets in V, and every o.n. set contains exactly n elements.

If we start from a basis set and apply the Gram-Schmidt orthogonaliza-

tion procedure we would get a complete o.n. set. We skip the proofs and

discussion.

So, for example starting from a basis of monomials {1, t, t2, . . .} and

taking the scalar product of two polynomials p(t), q(t) to be

(p, q) =

∫

∞

∞

e−t2p(t)q(t) dt

we would get Hermite polynomials as the o.n. basis in the space of all

polynomials.

§2.2 Representation in an o.n. basis

In this lecture I will explain the Dirac Bra Ket notation for vector spaces with

inner product. This notation is extremely useful for quantum mechanics.

When an o.n. basis is selected in the vector space Dirac notation is very

convenient and several formulas such concerning representations and change

of basis become simple and easy to remember.

The vectors in a vector space are denoted by |f〉, called kets, or ket

vectors. The linear functionals on the vector space are denoted as 〈g|, called

bra vectors. The action of a linear functionals on a vector is written as a

bracket 〈g|f〉. The names bra and ket are derived from the bra(c)ket. In the

inner product spaces all linear functionals ψ can be viewed as coming from

some vector j so that

ψ(f) = (j, f)

and the distinction between the vectors and linear functionals can be dropped,

if we take note of the correspondence of linear functional ψ with the vector

j. We shall not talk about the linear functionals any more.
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The scalar product of two vectors |ψ〉 and |φ〉 is thus denoted by 〈φ|ψ〉

Let E = {|e1〉, |e2〉, ..., |eN 〉} be an o.n. basis. If a vector |ψ〉 is written

as linear combination of the basis elements in E,

|ψ〉 =
∑

αk|αk〉

the coefficients will be given by the scalar products αk = 〈ek|ψ〉. Substitut-

ing the value of α we can write the expansion of |ψ〉 as

|ψ〉 =
∑

k

|ek〉〈ek|ψ〉

The vector |ek〉〈ek|ψ〉 appearing inside the sum can be thought of as a linear

operator Pk, (≡ |ek〉〈ek|), acting on the vector |ψ〉 giving |ek〉〈ek|ψ〉 :

|ψ〉 =
∑

k

|ek〉〈ek|ψ〉 =
∑

k

Pk|ψ〉

The relation can be viewed as a statement that the relation |ψ〉 =
∑

k Pk|ψ〉

holds for every vector |ψ〉. Thus
∑

k Pk must be equal to identity operator.

Hence we get
∑

k

|ek〉〈ek| = I

This relation is referred to as completeness relation.

§2.3 Change of o.n. basis in Dirac notation

Let x be a vector in a vector space. Let E and U be two o.n. bases. Let

x and x denote the components of the vector x w.r.t. the bases E and U

respectively. Similarly, let [T ] denote the matrix representing an operator T

w.r.t. the first basis E and [T ] be the matrix w.r.t. the second basis U. Let

us take the first o.n. basis as E = e1, e2, . . . , eN then we have the following

expressions.

xk = 〈ek|x〉, [T ]jk =< ej |T |ek > (48)

If we take the second o.n. basis as U = {u1, u2, ..., uN} then we have the

following expressions.

xi = 〈ui|x〉, [T ]jk = 〈uj |T |uk〉 (49)

We want to find relations between (i) components of x and x ,

(ii) elements of the matrices [T ] and [T ]. The change of basis can be achieved
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by using the completeness relation. For example

xi = 〈ei|x〉 = 〈ei|I|x〉 = 〈ei|
{

∑

k

|uk〉〈uk|
}

|x〉 (50)

=
∑

k

〈ei|uk〉〈uk|x〉 =
∑

k

〈ei|uk〉xk. (51)

This gives the required relation between the components of the vector x

w.r.t. the two basis sets E and U. Similarly,

[T ]jk = 〈ej |T |ek〉 (52)

= 〈ej |
{

∑

m

|um >< um|
}

T
{

∑

n

|un〉〈un|
}

|ek〉 (53)

=
∑

m

∑

n

〈ej |um〉〈um|T |un〉〈un|ek〉 (54)

=
∑

m

∑

n

〈ej |um〉[T ]mn〈un|ek〉 (55)

This gives the change of basis formula for the matrices representing the op-

erators. All these results are valid for finite dimensional vector spaces only.

Their use in case of infinite dimensional vector spaces requires a separate

detailed discussion.
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3 Dirac Bra-Ket Notation

In this lecture I will explain the Dirac Bra Ket notation for vector spaces with

inner product. This notation is extremely useful for quantum mechanics.

When an o.n. basis is selected in the vector space Dirac notation is very

convenient and several formulas such concerning representations and change

of basis become simple and easy to remember.

The vectors in a vector space are denoted by |f〉, called kets, or ket

vectors. The linear functionals on the vector space are denoted as 〈g|, called

bra vectors. The action of a linear functionals on a vector is written as a

bracket 〈g|f〉. The names bra and ket are derived from the bra(c)ket. In the

inner product spaces all linear functionals ψ can be viewed as coming from

some vector j so that

ψ(f) = (j, f)

and the distinction between the vectors and linear functionals can be dropped,

if we take note of the correspondence of linear functional ψ with the vector

j. We shall not talk about the linear functionals any more.

The scalar product of two vectors |ψ〉 and |φ〉 is thus denoted by 〈φ|ψ〉

Let E = {|e1〉, |e2〉, ..., |eN 〉} be an o.n. basis. If a vector |ψ〉 is written

as linear combination of the basis elements in E,

|ψ〉 =
∑

αk|αk〉

the coefficients will be given by the scalar products αk = 〈ek|ψ〉. Substitut-

ing the value of α we can write the expansion of |ψ〉 as

|ψ〉 =
∑

k

|ek〉〈ek|ψ〉

The vector |ek〉〈ek|ψ〉 appearing inside the sum can be thought of as a linear

operator Pk, (≡ |ek〉〈ek|), acting on the vector |ψ〉 giving |ek〉〈ek|ψ〉 :

|ψ〉 =
∑

k

|ek〉〈ek|ψ〉 =
∑

k

Pk|ψ〉

The relation can be viewed as a statement that the relation |ψ〉 =
∑

k Pk|ψ〉

holds for every vector |ψ〉. Thus
∑

k Pk must be equal to identity operator.

Hence we get
∑

k

|ek〉〈ek| = I

This relation is referred to as completeness relation.
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§3.1 Change of o.n. basis in Dirac notation

Let x be a vector in a vector space. Let E and U be two o.n. bases. Let

x and x denote the components of the vector x w.r.t. the bases E and U

respectively. Similarly, let [T ] denote the matrix representing an operator T

w.r.t. the first basis E and [T ] be the matrix w.r.t. the second basis U. Let

us take the first o.n. basis as E = e1, e2, . . . , eN then we have the following

expressions.

xk = 〈ek|x〉, [T ]jk =< ej |T |ek > (56)

If we take the second o.n. basis as U = {u1, u2, ..., uN} then we have the

following expressions.

xi = 〈ui|x〉, [T ]jk = 〈uj |T |uk〉 (57)

We want to find relations between (i) components of x and x ,

(ii) elements of the matrices [T ] and [T ]. The change of basis can be achieved

by using the completeness relation. For example

xi = 〈ei|x〉 = 〈ei|I|x〉 = 〈ei|
{

∑

k

|uk〉〈uk|
}

|x〉 (58)

=
∑

k

〈ei|uk〉〈uk|x〉 =
∑

k

〈ei|uk〉xk. (59)

This gives the required relation between the components of the vector x

w.r.t. the two basis sets E and U. Similarly,

[T ]jk = 〈ej |T |ek〉 (60)

= 〈ej |
{

∑

m

|um >< um|
}

T
{

∑

n

|un〉〈un|
}

|ek〉 (61)

=
∑

m

∑

n

〈ej |um〉〈um|T |un〉〈un|ek〉 (62)

=
∑

m

∑

n

〈ej |um〉[T ]mn〈un|ek〉 (63)

This gives the change of basis formula for the matrices representing the op-

erators. All these results are valid for finite dimensional vector spaces only.

Their use in case of infinite dimensional vector spaces requires a separate

detailed discussion.

vs-lsb-01 Aug 2020 Created :Aug 13,2020 Printed : August 15, 2020

Proofs License: Creative Commons No Warranty, Implied or Otherwise

Open LATEXFile vs-lsb-01

19

http://creativecommons.org/licenses/by-nc/4.0/

	Inner Product Spaces
	Norm and Inner Product in a Vector Space
	Parallelogram and Polarization Identities
	Cauchy Schwarz and Triangle Inequalities
	Triangle Inequality

	Orthogonality
	Orthogonality
	Grahm Schmidt orthogonalization

	Complete Orthonormal Set
	Complete orthonormal set
	Representation in an o.n. basis
	Change of o.n. basis in Dirac notation

	Dirac Bra-Ket Notation
	Change of o.n. basis in Dirac notation


