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1 Linear Operators on a Vector Space

Lesson Overview

Syllabus Linear operators; Sum product and commutator of two opera-
tors; Inverse of an operator; Properties of inverse of an operator.

Lesson Objectives You will learn construction of new vector spaces from
a given set of vector spaces.

Prerequisite Definition of Vector spaces; Mapping of sets
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§1.1 Linear Operators-I

Basic definitions

Definition 1 An operator, T, on a vector space V is a mapping

T : V → V

from the vector space V into itself. In other words, to an arbitrary vector f

from the vector space, an operator, T , assigns a unique vector, Tf , in the

vector space V.

T : f 7→ Tf ∈ V

Definition 2 An operator, T on a vector space is a linear operator if it

satisfies the property

T (αf + βg) = α Tf + β Tg

∀α, β ∈ F and ∀ g ∈ V. Equivalently an operator T is linear if

T (f + g) = Tf + Tg and T (αf) = αTf

It is, therefore, seen that for an operator T to be linear it is necessary that

Tf = 0 if f = 0.

Definition 3 Given two linear operators A and B we can define their sum

, A+B, by means of the following rule for its action on an arbitrary vector.

(A+B)f = Af +Bf

The sum of two linear operators is again a linear operator.

Definition 4 Multiplication of a linear operator T by a scalar α is a

linear operator defined by

(αT )f = α(Tf)

Theorem 1 With addition of linear operators and scalar multiplication de-

fined as above, the set of all linear operators on a vector space V is again a

vector space. If the dimension of the vector space V is n, the dimension of

the vector space of all the operators onV is n2.
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Product and commutator

Definition 5 Product of two operators, A and B, is defined as in the

case of mappings.

(AB)f = A(Bf)

When A and B are linear operators, the product AB is also a linear operator.

Definition 6 The commutator of two operators is defined to be

[A,B ] = AB −BA

Definition 7 The anticommutator is defined by

[A,B ]+ = AB +BA

Properties of commutator

The commutator satisfies the following properties.

[A,B ] = −[B,A ] (1)

[α1A1 + α2A2, B ] = α1[A1, B ] + α2[A2, B ] (2)

[A, β1B1 + β2B2 ] = β1[A,B1 ] + β2[A,B2 ] (3)

[A,BC ] = B[A,C ] + [A,B ]C (4)

[AB,C ] = A[B,C ] + [A,C ]B (5)

[A, [B,C ] ] + [B, [C,A ] ] + [C, [A,B ] ] = 0 (6)

The last relation is known as the Jacobi identity.

Definition 8 With sum, product and multiplication by a scalar defined for

operators, the following expression defines polynomial in a linear operator

A.

p(A) = α0I + α1A+ α2A
2 ++αnA

n

The operator p(A) is again a linear operator.
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§1.2 Inverse of an operator-Basics

Definition 9 Let T be an operator on a vector space. We say T is one to

one if action of T on two distinct vectors gives distinct answers.

x1 6= x2 =⇒ Tx1 6= Tx2

This is equivalent to the condition

Tx1 = Tx2 =⇒ x1 = x2

Definition 10 An operator T on a vector space is called onto if ∀ y ∈ V

we can find at least one x ∈ V such that Tx = y. This x may, in general,

not be unique.

Definition 11 An operator is called invertible if it is both one to one and

onto.

Definition 12 Let T be an operator which is both one to one and onto. We

define inverse of T by giving its action on an arbitrary vector u ∈ V.

Because T is onto, we can find a vector u such that Tu = v. Since T is

one to one it follows that u satisfying Tu = v is uniquely determined once

the vector v is specified. We define inverse of T , to be denoted by T−1, by

the equation

T−1v = u

This definition coincides with the defintion of the inverse for a mapping.

The inverse satisfies

(AB)−1 = B−1A−1,

(αA)−1 = (1/α)A−1, α 6= 0.

Definition 13 Let T be a linear operator on a vector space V. The range

R(T ) is the set of vectors obtained by applying T on all vectors f ∈ V.

R(T ) = {g|g = Tf,∈ V}

Definition 14 Also the null space of an operator, N(T), is the set of all

those vectors x for which Tx = 0.

N( T ) = {x|x ∈ V and Tx = 0}
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Both R(T ) and N(T ) are subspaces of the vector space V. ( Proof ?!)

Definition 15 The dimension of R(T ) for an operator is called the rank of

the operator T . Obviously rank (T ) ≤ dimV.

Clearly rank of an operator is the maximum number of linearly indepen-

dent vectors that can be selected from Tf when varies over the entire vector

space V.

§1.3 Inverse of an operator-Properties

An operator on a vector space is invertible if it is one to one and onto oper-

ator. For linear operators in finite dimensional vector spaces the property of

being one to one is equivalent to the onto property. Thus a linear operator

on a finite dimensional space is invertible if anyone of the of the following

statements holds.

(a) the operator is one to one
(b) the operator is onto.

Now we will prove a set of theorems which provide necessary and suffi-

cient conditions so that a linear operator in a finite dimensional vector space

may be invertible.

Theorem 2 Let T, S,R be arbitrary ( linearity is not demanded ) operators

on a vector space such that

TS = RT = I (7)

where I is the identity operator. Then T is invertible and

R = S = T−1

Proof:

We begin with noting the linearity is not demanded as a condition on the

operators. Let R and S exist such that Eq.(7) is satisfied. Then

T (Sx) = (TS)x = x,∀x ∈ V.

Thus T is onto because given any vector x ∈ V there exists a vector ( y = Sx

) such that Ty = x.
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Next using RT = I we will show that T is one to one. To show that T

is one to one, we must prove that Tx1 = Tx2 ⇐⇒ x1 = x2. Let Tx1 = Tx2

apply R on both sides. This gives R(Tx1) = R(Tx2), or, (RT )x1 = (RT )x2

using the given property RT = I we get the desired result that x1 = x2.

Thus Tx1 = Tx2 ⇐⇒ x1 = x2 .Therefore T is one to one. Thus T is

invertible because T is both one to one and onto.

Conversely if T−1 exists , the given relations are satisfied for R = S =

T−1. There (II.12) is necessary and sufficient for an operator to have an

inverse. Note that when the operator T is linear, each one of the two con-

ditions (a) TS = I (b) RT = I is separately sufficient for T to have an

inverse.

Theorem 3 Let T be a linear operator on a finite dimensional vector space

V (dimV = N). Then the following statements are equivalent.

(2.1) Tx = 0 implies x = 0.

(2.2) T is one to one.

(2.3) If X = {x1, x2, . . .} is a linearly independent set then TX ≡ {Tx1, Tx2, . . .}

is also linearly independent set.

(2.4) If X = {x1, x2, . . . , xN} is a basis then TX ≡ {Tx1, Tx2, . . . , TxN} is

also a basis.

(2.5) T is an onto operator.

(2.6) Let X = {x1, x2, . . . , } and Y = {y1, y2, . . . , } be sets of vectors such

that yj = Txj. If Y is a linearly independent set of vectors, then X is

also linearly independent.

(2.7) If X and Y are as in (2.6) above and if Y is a basis, then X is also a

basis.

Proof:

We shall prove that

(2.1) =⇒ (2.2) =⇒ (2.3) =⇒ (2.4) =⇒ (2.5) =⇒ (2.7) =⇒ (2.1)

Proof of (2.1) =⇒ (2.2) We are given (2.1) :Tx = 0 =⇒ x = 0. Consider

Tx1 = Tx2; Then Tx1−Tx2 = 0 Using linearity we get T (x1−x2) = 0.

Using (2.1) we get x1 = x2. Thus Tx1 = Tx2 → This means that T is

one to one.
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Proof of (2.2) =⇒ (2.3) To prove {Tx1, Tx2, ...}is linearly independent con-

sider

α1(Tx1) + α2(Tx2) + ... = 0 = T0

T (α1x1 + α2x2 + ...) = T0

Using (2.2), T is one to one gives α1x2+α2x2+ ... = 0 It is given that

x1, x2, .... is linearly independent, hence we get α1 = α2 = ... = 0 This

proves that {Tx1, Tx2, ...} is linearly indepndent.

Proof of (2.3) =⇒ (2.4) Let B = {e1, e2, ..., eN} be a set of basis vectors.

∴ {e1, e2, ..., eN } is linearly independent. Hence using (2.3) we see that

{Te1, T e2, ...., T eN} is also linearly independent set. The number of

elements, N , in this set is equal to the dimension of the vector space,

hence the set is also a basis set.

Proof of (2.4) =⇒ (2.5) To prove (2.5),i.e., T is onto we must show that ∀

vectors y ∈ V, we can find a vector x such that Tx = y. Let{e1, e2, ..., eN}

be a basis set then (2.4) gives that {Te1, T e2, ...., T eN} is also a basis.

∴ given an arbitrary vector y ∈ V, we can expand y in terms of the

vectors {Te1, T e2, ...., T eN} :

y = α1Te1 + α2Te2 + ...+ αNTeN

or , using linearity we have

y = T (α1e1 + α2e2 + ...+ αNeN )

Therefore, we have shown that y can be written as Tx, where x is

given by

x = (α1e1 + α2e2 + ...+ αNeN )

Proof of (2.5) =⇒ (2.6) Given T is onto means that for every y ∈ V we

can find at least one vector x ∈ V such that y = Tx. Hence, starting

from {y1, y2, ...} we can form the set {x1, x2, ....} such that Txk =

yk. Assume, as given in (2.6), that {y1, y2, ...} is LI . To prove that

{x1, x2, ....} is LI consider

α1x1 + α2x2 + .... = 0

Applying T on the above equation we get

T (α1x1 + α2x2 + ....) = 0
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or, using the linearity

α1Tx1 + α2Tx2 + .... = 0

or,

α1y1 + α2y2 + .... = 0

As {y1, y2, ....} is given to be linearly independent the above relation

can be satisfied only when

α1 = α2 = .... = 0

This proves that the set {x1, x2, ....} is LI .

Proof of (2.6) =⇒ (2.7) Y = {y1, y2, ..., yN} is a basis set and is, therefore,

LI. (2.6) gives that the set X = {x1, x2, . . . , xN} is also LI. Linear

independence of the set X along with the fact that the number of

elements in X is equal to the dimension of the vector space V proves

that the set X is a basis set.

Proof of (2.7) =⇒ (2.1) Let Y = {y1, y2, ....yN} be a basis and let the set

X = {x1, x2, ...., xN} be as in the statement (2.7) then X is a basis.

Assume x is such that Tx = 0, we have to show that x = 0. Expand x

in terms of vectors in the basis set X:

x = α1x1 + α2x2 + . . .+ αNxN

Applying T on the above equation, and using Tx = 0, we get

T (α1x1 + α2x2 + . . .+ αNxN ) = 0

α1Tx1 + α2Tx2 + . . .+ αNTxN = 0

α1y1 + α2y2 + . . .+ αNyN = 0

The last equation above can hold only when

α1 = α2 = . . . = αN = 0

This gives the desired result x = 0 proving (2.1).

We will now use the above statements to formulate the condition of existence

of in inverse of an operator in terms of dimension of the vector space, range

space of T , etc.
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Theorem 4 Let t be an invertible linear operator on a vector space V then

the following five statements are equivalent to the existence of inverse of the

operator T .

3.1 The range space of T is entire vector space, i.e. TV = V.

(3.2) The null space of T is equal to {0}.

(3.3) dim(TV) = dimV

(3.4) Rank T = dim V

(3.5) dim N(T ) = 0

Proof:

1. The property that the range space of T is entire space is equivalent to

T being onto.

2. The property that the null space N(T ) = {0}, is just a restatement of

Tx = 0 ⇒ x = 0.

3. Let X = {x1, x2, ..., xn} be a basis set for the vector space V. Now the

following implications hold.

T has inverse ⇐⇒ T is one to one ⇐⇒ TX = {Tx1, Tx2, ..., Txn} is a

basis set

⇐⇒linear span of TX = V ⇐⇒ TV = V The last implication follows

from the fact that X j V implies that TX j V. This together with

TX = V gives TV = V.

4. For proving invertibility being equivalent to (3.4), recall that rankT =

dim(TV. Thus (3.4) is true if and only if (3.1) is true.

5. The property (3.4) gives that a linear operator T is invertible if and

only if rankT = dimV. Now dimN(T ) + rank(T ) = dimV. This proves

that T is invertible if and only if dimN(T ) = 0. Thus existence of of

inverse is equivalent to (3.5).
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2 Matrix Representation in a Basis
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