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Lesson-1 Linear Operators in Inner Product Spaces

Lesson Overview

Syllabus Adjoint of an operator; Hermitian and Unitary operators.

Lesson Objecives To define the adjoint of of a linear operator in a finite

Dimensional inner product space. To define hermitian and unitary opera-

tors; to discuss the properties of eigenvalues and eigenvectors of hermitian

and unitary operators.

Prerequisites Understanding of the definition of vector spaces; concept

of inner product. Linear functionals in an inner product space. and orthog-

onality.

References

1. Halmos P. R. Finite Dimensional Vector Spaces Springer Verlag, East

West Edition (1974).

2. Fraleigh J. B. A First Course in Abstract Algebra, Pearson Education

Limited, Essex, (2014).
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§1.1 Some preliminary results on linear operators

Theorem 1 Let T be a linear operator in an inner product space. Let f

and g be arbitrary vectors then

(f, Tg) = (x1, Tx1)− (x2, Tx2) + i(x3, Tx3)− i(x4, Tx4)

where

x1 = f + g; x2 = f − g; x3 = f − ig; x4 = f + ig

Proof follows by proceeding in a way similar to the proof of polarization

identity. Use linearity of the operator T and expand the right hand side of

the above identity to be proved.

Theorem 2 (When is a linear operator zero ?)

(1) If (f, Tg) = 0 holds for all f and g, then T = 0.

(2) If (f, Tf) = 0 is true for all f ∈ V , then T = 0.

(3) If (xi, Txj) = 0 holds for all elements xi, xj in a basis X = {x1, x2, . . . , xN}

then T = 0.

Proof of (1) Given that (g, Tf) = 0 holds for all g, f ∈ V . Therefore, we

take g = Tf. This gives (Tf, Tf) = 0 which in turn implies Tf = 0

for all f ∈ V. Therefore, T = 0.

Proof of (2) Using linearity of T we have already proved the result that

4(f, Tg) = (x1, Tx1)− (x2, Tx2)− i(x3, Tx3) + i(x4, Tx4)

where

x1 = f + g;x2 = f − g;x3 = f − ig;x4 = f + ig

Since (f, Tf) = 0 for all vectors f ∈ V , the right hand side is zero.

Hence we get (f, Tg) = 0 for all f, g in the vector space . Hence using

part (2) we get T = 0.

Proof of (3) Since an arbitrary vector f can be written as a linear combi-

nation, f =
∑

αkxk, we can prove (2) by using linearity of T . Hence

the result T = 0follows.

§1.2 Adjoint of an Operator

Representation theorem for linear functionals It can be proved that

for every linear functional ψ : f −→ ψ(f) on a complex inner product space

V of finite dimension, there exists a vector g ∈ V such that << Proof?? >>

ψ(f) = (g, f) (1)
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Definition 1

Given a linear operator T on an inner product space of finite dimension now

we shall define adjoint of T , to be denoted by T †. The adjoint T † will be

defined once its action on an arbitrary vector f is specified. The functional

φ, defined by

φ : g → φ(g) = (f, Tg), (2)

is a linear functional on V, and hence there exists a vector unique vector

h ∈ V such that

(h, g) = φ(g) = (f, Tg) (3)

We, then, define T †f = h. Thus the operator T † has the property

(f, Tg) = (T †f, g), ∀f, g ∈ V. (4)

Remark If we find (f, Tg) = (Xf, g) holds for all f and g we can conclude

immediately that X = T †. WHY ? ¡¡ Proof ?! ¿¿

Properties of the adjoint

1. A†, the adjoint of a linear operator is again a linear operator.

2. (αA)† = α∗A†

3. (A+B)† = A† +B†

4. (AB)† = B†A†

5. If A is invertible, A† is invertible and (A†)−1 = (A−1)
†
.

§1.3 Hermitian Operator

Definition 2 An operator A is hermitian if A† = A.

Theorem 3 (When is an operator hermitian ?) Each of the following

two statements give condition for hermiticity of an operator.

(H1) An operator T is hermitian if and only if (Tg, f) = (g, Tf) holds for

all f, g ∈ V.

(H2) In a finite dimensional vector space an operator T is self adjoint if and

only if (f, Tf) is real ∀f ∈ V.

Proof of (H1) : Let T be a hermitian operator. Using the definition of

adjoint we have

(g, Tf) = (T †g, f)

or

(g, Tf) = (Tg, f) (∵ T = T †)
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Let (g, Tf) = (Tg, f) for all f and g in the vector space. Then we get

(g, Tf) = (Tg, f) (given ) (5)

(g, Tf) = (g, T †f) (Use def of T †) (6)

(g, (T − T †)f) = 0 (7)

holds ∀g and f . Select g = (T − T †)f . This gives ‖(T − T †)f‖ = 0.

Therefore,

(T − T †)f = 0 ∀f ∈ V. (8)

Hence T = T †

Proof of (H2) : Let (f, Tf) be real. Then

(f, Tf) = (f, Tf)∗ given (9)

= (Tf, f) ( property of inner product ) (10)

= (f, T †f) ( def of adjoint ) (11)

Thus (f, Tf) = (f, T †f) holds ∀f ∈ V. This implies (f, (T−T †)f) = 0,

hence T = T †. Therefore, T is hermitian.

Theorem 4 If X is any operator we may write, X = A+ iB, where A and

B are hermitian operators.

The proof is easy. We write A = (X + X†)/2; B = (X − X†)/2i It is

straight forward to verify that A and B are hermitian and that X = A+B.

)||(Short Examples 1 Consider the Hilbert space L
2(−∞,∞) of square in-

tegrable functions.

(1a) Let X̂ be defined as

X̂ψ(x) = eikxψ(x), k ∈ R

then
X̂†ψ(x) = e−ikxψ(x), k ∈ R

The operator X̂ is not hermitian.

(1b) The parity operator P̂ defined by

P̂ψ(~x) = ψ(−vecx)

is hermitian, P̂ † = P̂ because

(Pψ(x), φ(x)) = (ψ(x), Pφ(x).

(1c) The adjoint of translation operator T̂ defined by

T̂ψ(x) = ψ(x+ a)

is given by .
T̂ †ψ(x) = ψ(x− a)

(1d) The translation operator T̂ defined above is a not hermitian operator,
T † 6= T .
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Theorem 5 (Eigenvalues and Eigenvectors of Hermitian Operators)

Two important properties of hermitian operators are given below.

(E1) The eigenvalues of a hermitian operators are real.

(E2) The eigenvectors of a hermitian operator corresponding to two distinct

eigenvalues are orthogonal.

Proof of (E1) : Let λ be an eigenvalue and f be eigenvector of T with

Tf = λf . Since T is a hermitian operator we have

(x, Ty) = (Tx, y), ∀x, y ∈ V. (12)

Therefore setting x = y = f in (12), we get (f, Tf) = (Tf, f) we get

(Tf, f) = (f, Tf) (13)

⇒ (λf, f) = (f, λf) (14)

∴ (λ∗ − λ)(f, f) = 0 (15)

As f 6= 0, (f, f) 6= 0 and hence we must have λ∗−λ = 0 Therefore the

eigenvalues of a hermitian operator are real.

Proof of (E2) :To prove that two eigenvectors corresponding to a different

eigenvalues are orthogonal. Let Tf = λf and Tg = µg. and T be a

hermitian operator T † = T and λ 6= µ. Then proceeding as in proof

of (E1)

(f, Tg) = (Tf, g) (Since T † = T )

We have

(f, µg) = (λf, g)

or

µ(f, g) = λ∗(f, g) = λ(f, g)

because the eigenvalues λ, µ are real. For λ 6= µ the above equation

implies that (f, g) = 0. Hence f and g are orthogonal.

§1.4 Unitary operator

Definition 3 A linear operator U is called unitary if U † = U−1. In case

of a finite dimensional vector space, it is equivalent to demanding

UU † = I, ( or U †U = I).

Theorem 6 (When is an Operator Unitary ?) In a finite dimensional

vector space, V, the following conditions on an operator X are equivalent.

(U1) X is unitary.

(U2) (Xf,Xg) = (f, g) ∀f, g ∈ V

(U3) ‖Xf‖ = ‖f‖ ∀f ∈ V.
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Proof of (U1) ⇒ (U2) : (Xf,Xg) = (f,X†Xg) = (f, g)

Proof of (U2) ⇒ (U3) : (U3) follows from (U2) by setting g = f in (U2).

Proof of (U3) ⇒ (U1) : Given that ‖Xf‖ = ‖f‖ ∀f ∈ V we have

(Xf,Xf) = (f, f) . This in turn gives (f,X†Xf) = (f, f) or

(f, (X†X − I)f) = 0∀f ∈ V

Thus (X †X−I) = 0. This means that X†X = I. In finite dimensional

spaces we then have the result that X is unitary.

)||(Short Examples 2 Consider the Hilbert space L
2(−∞,∞) of square in-

tegrable functions. Consider again the operators considered in )||( Short Ex-
amples 1 above..

(2a) Let X̂ be defined as

X̂ψ(x) = eikxψ(x), k ∈ R

then
X̂†ψ(x) = e−ikxψ(x), k ∈ R

The operator X̂ is unitary, because X̂ψ(x), X̂φ(x)) = (ψ, φ

(2b) The parity operator P̂ defined by

P̂ψ(~x) = ψ(−vecx)

is unitary. P̂ † = P̂ and therefore (P 2ψ(x) = Pψ(−x) = ψ(x). Thus

P̂ 2 = I ⇒ P̂ †P̂ = I = P̂ P̂ †.

(2c) The adjoint of translation operator T̂ defined by

T̂ψ(x) = ψ(x+ a)

is given by .
T̂ †ψ(x) = ψ(x− a)

(2d) The translation operator T̂ defined above is a unitary operator, T † 6= T .

Theorem 7 ( Eigenvalues and Eigenvectors of Unitary Operators)

If λ as an eigenvalue of a unitary operator, then

(E3) Absolute value of λ is unity, |λ| = 1. It can be equivalently written in

several forms such as λ∗λ = 1, or λ∗ = 1/λ, or λ = eiα with α ∈ R.

(E4) The eigenvectors of a unitary operator corresponding to two distinct

eigenvalues are orthogonal.

Proof of (E3) : Let U be a unitary operator having λ as an eigenvalue and

f as an eigenvector.

Uf = λf (16)

⇒ (Uf,Uf) = (f, f), ( since U is unitary ) (17)

⇒ (λf, λf) = (f, f) (18)

⇒ λ ∗ λ(f, f) = (f, f) (19)

⇒
(

|λ|2 − 1
)

(f, f) = 0 (20)

⇒ |λ|2 = 1, ∵ (f, f) 6= 0 (21)

Therefore, |λ| = 1. This means that λ is phase and λ = exp(iα).
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Proof of (E4) : Let λ and µ be two distinct eigenvalues of a unitary op-

erator U and let f and g be the corresponding eigenvectors. Thus

Uf = λf, Ug = µg, and λ 6= µ. (22)

Since U is unitary

(Uf,Ug) = (f, g) (23)

⇒ (λf, µg) = (f, g) (24)

⇒ (λ∗µ)(f, g) = (f, g) (25)

Since |λ| = 1, we have λ∗λ = 1, or λ∗ = 1/λ. The above equation then

gives

[(µ/λ)− 1](f, g) = 0 (26)

∴ (f, g) = 0, ∵ µ 6= λ and (µ/λ− 1) 6= 0. (27)

)||(Short Examples 3 The matrix

S =

(

cos θ sin θ
− sin θ cos θ

)

is real orthogonal and hence unitary. Find its eigenvalues and verify that

their moduli are unity.

Lesson-2 Spectral Theorem

Lesson Overview

Syllabus Normal operator; spectral theorem.

Lesson Objecives To define normal operator, and discuss its properties.

The spectral theorem for normal operators is briefly explained.

Prerequisites Understanding of the definition of vector spaces; concept

of inner product. Linear operators in an inner product space. Commutator

of two linear operators.

References

1. Halmos P. R. Finite Dimensional Vector Spaces Springer Verlag, East

West Edition (1974).

2. Fraleigh J. B. A First Course in Abstract Algebra, Pearson Education

Limited, Essex, (2014).
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§2.1 Normal Operators

Two important references for this lecture are [?], and [?].

Definition 1 An operator on an inner product space V is called a normal

operator if it commutes with its adjoint.

Proposition An operator T on an inner product space V is normal if and

only if ‖Tx‖ = ‖T †x‖ for all x ∈ V.

To prove this consider

(Tx, Tx) = (T †x, T †x) ⇐⇒ (x, T †Tx) = (xTT †x) (28)

⇐⇒ (x, (TT † − T †T )) (29)

⇐⇒ TT † − T †T = 0 (30)

This completes the required proof.

Theorem 8 Let T be a normal operator on an inner product space. Then

u is eigenvector of T with eigenvalue λ if and only if u is an eigenvector of

T † with eigenvalue λ∗.

Proof

Let I be the identity operator, and operator T be a normal operator. Then

X ≡ T − λI) is normal for all λ ∈ C, because X† = T † − λ∗I and

[

X,X†
]

=
[

T − λI, T † − λ∗I
]

(31)

=
[

T, T †
]

− λ
[

I, T †
]

− λ
[

I, T †
]

+ |λ|2
[

I, I
]

(32)

=
[

T, T †
]

= 0. (33)

That u is and eigenvector of T implies Xu = 0 ⇒ ‖Xu‖ = 0. By the

previous theorem ‖X†u‖ = 0.Thus

‖X†u‖ = 0 =⇒ X†u = 0 =⇒ (X† − λ∗I)u = 0 =⇒ X†u = λ∗u. (34)

This completes the required proof.

Definition 2 (Normal Operator) An operator A is called normal if it

commute with its adjoint

AA† −A†A = 0.

The unitary and hermitian operators are subset of class of all normal op-

erators. The normal operators shares orthogonality and completeness prop-

erties of eigenvectors with unitary and hermitian operators. The spectral

theorem holds for the normal operators. For more details see references.

Theorem 9 If A is normal, then a necessary and sufficient condition that

x be an eignevector of A is that it be a an eigenvector of A†; if Ax = λx

then A†x = λ∗x.
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If A is normal, then we have

‖Ax‖ = (Ax,Ax) = (A†Ax, x) = (AA†x, x) = (A†x,A†x) = ‖A†x‖. (35)

For every complex λ, normal operator A, A − λ is also normal. Then we

have

‖(A† − λ∗)x‖ = ‖(A− λ)x‖ = 0 (36)

This proves that x is an eigenvector of A with eigenvalue λ if and only if x

is an eigenvector of A† with eigenvalue λ∗.

Theorem 10 If A is normal then the eigenvectors belonging to distinct

eigenvalues are orthogonal.

Let x1, x2 be the eigenvectors of A with eigenvalues λ1,Λ2, then

Ax1 = λx1 ⇒ (x2, Ax1) = λ1(x1, x1) (37)

Also we have

Ax2 = λ2x2 ⇒ A†x2 = λ∗2x2 (38)

∴ (A†x2, x1) = (λ∗2x2, x1) = λ2(x2, x1) (39)

Subtracting (37) and (39) we get

(x2, Ax1)− (A†x2, x1) = (λ1 − λ2)(x2, x1). (40)

The left hand side is zero, ( definition of adjoint). Therefore (x2, x1) = 0 if

λ1 6= λ2.

§2.2 Spectral Theorem

It is an important question to ask when will the set of all eignevectors of

an form a basis. A large class of operators is the class of normal operators

containing the set of all hermitian and the set of all unitary operators.

The eigenvectors of a normal operator shares orthogonality property with

hermitian and unitary operators. So we begin with a result on normal

operators.

Theorem 11 If A is normal, λ is an eigenvalue of A, and M is the set of

all solutions of Ax = λx, the both M and M⊥ are invariant under A.

If a vector x belongs to both M and M⊥, it must be orthogonal to itself and therefore it
must be the null vector, x = 0.

Theorem 12 (Completeness of eigenvectors) For a normal operator in

a finite dimensional vector space the eigenvectors span the whole space.
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Let A be a normal operator and M be the subspace spanned by its eigenvec-

tors, and let E be the projection operator onto M. Then M⊥ is invariant

under A.

To prove by contradiction we assume that M is not whole space. Then

M⊥ is a finite dimensional subspace with dimension greater than zero. Con-

sider A(1 − E) as an operator on M⊥. Since every operator on a finite

dimensional vector space has at least one eigenvalue, there exists a number

α and a nonzero vector y such that A(1− E)y = αy. Then we would have

Ay = AEy +A(1− E)y = A(1− E)y = αy. (41)

So y is an eigenvector of A and should belong to M. Thus y is a nonzero

vector common to both M and M⊥. This contradicts the fact that the only

vector common to both M and Mca⊥ is the null vector.

The above result can be stated in a form that can be generalized for

infinite dimensional vector spaces.

Theorem 13 (Spectral theorem) To every normal linear transformation

A on a finite dimensional vector space with inner product there correspond

numbers λ1, λ2, . . . , λr and perpendicular projections P1, P2, . . . , Pr where r

is strictly positive integer, not greater than the dimension of the vector space)

so that

1. the λj are pairwise distinct

2. the projections Pj are pairwise orthogonal and different from zero.

3.
∑

i PI = I

4.
∑

i λiPi = A

For a proof we refer to the books by Jordan and by S. Hassani.

Definition 3 Using the spectral theorem we can now define functions of

operators. If A is a normal operator as before, an operator function F (A)

is defined by

F (A) =
∑

i

F (λi)Pi (42)

The relationship of normal operators with hermitian operators, unitary

operators etc is give by the following theorem.

Theorem 14 A normal operator on a finite dimensional complex vector

space is

• hermitian if and only if all its eigenvalues are real;

• positive if and only if all its eigenvalues are positive;

• strictly positive if and only if all its eignevalues are strictly positive;

• unitary of all its eigenvalues have absolute value 1;
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• invertible if and only if all its eigenvalues are different from zero;

• idempotent if and only if all its eigenvalues are equal to zero or 1.

For more details see Halmos. For spectral theorem for operators in infinite

dimensional vector spaces see Jordan [1], Sadri Hassani[2], Halmos[3].
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