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§1 Structure of Classical Theories

§1.1 Structure of physical theories

Classical theory of a physical system consists of components listed in Table (1) below.

Table 1: Components of a classical theory

SN Components

1 States of the physical system; ‘Co-ordinates’
2 Dynamical Variables
3 Laws of Motion
4 Forces, Interactions

At first we shall briefly explain each item in the table and later discuss them by means of

examples of different physical systems.

Physical states: By state of a physical system one means ways of specifying complete

information about the system.

Dynamical variables: The dynamical variables of a classical system are functions of

state of the system and can be computed when the state has been specified.

Laws of motion: Not only we are interested in knowing about a system at a given time,

we also want to know how the system changes with time. In order to describe behaviour

of a system under time evolution one needs to know the laws of motion. Several different

forms of the laws of motion are available for mechanical systems.

• Newton’s laws

• Lagrangian equations of motion

• Hamilton’s equations

• Poisson bracket formalism

When applicable, all the above formalism are equivalent.
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Interactions: A classical description is completed by specifying the forces of the inter-

actions of the system. It should be remarked that while the laws of motion are general and

are applicable to a wide variety of physical systems, the nature of forces or the explicit

form of interactions differs from system to system. The interactions are specified by by

giving explicit expressions for forces acting on the bodies in the system.

Classical Systems: Some examples of classical systems of interest are

• System of point particles moving in a force field.

• One or more point particle moving on a surface of a sphere.

• Rigid body

• Vibrating string or a spring

• Electromagnetic waves

• Charged particles interacting with electromagnetic fields

System of point particles You are all familiar with the newtonian mechanics from

your school days. A complete specification of state of a particle requires three position

coordinates and three velocities. The dynamical variables are experimentally measurable

quantities such as energy, momentum and angular momentum. They are functions of

coordinates and velocities.

The equations of motion are given by the second law. For a system of point particles,

the behaviour of each particle is governed by the equation of motion

mα
d2~rα
dt2

= ~Fα (1)

Note that the EOM are a set of second order differential equations in time. Therefore

one needs to know the values of position and velocities at a time in order t0 to be able to

predict the state of the system at a later time. One also needs to have information about all

the forces acting on the particle. The Newton’s laws require that the equations of motion

be set up using the Cartesian coordinates to describe the particle. For a system consisting

of several particles one needs to knows all the forces, including the forces of constraint.

In order to set up equations of motion in a non Cartesian system of coordinates one has

to start from the Cartesian system and take into account of the constraints. In general

finding solution may require a change variables from Cartesian coordinates to a new set

of coordinates. Thus, for example, for a bead sliding on a sphere one should change from

Cartesian coordinates to polar coordinates.
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Waves: The state of a vibrating string is described completely by specifying the dis-

placement and velocity of the string at each point. The vibrations are also governed by

the Newtons Laws which can be used to derive the wave equation giving the propagation

of waves in a medium.

Charged particles and radiation The systems consisting of charged particles inter-

acting with electromagnetic fields are very important. These are governed by the Maxwells

equations and the Lorentz force equation. The state is described by specifying position

and momenta of the charged particles and the electromagnetic fields, or the scalar and

vector potentials, at all points in the space.

§1.2 Formulations of classical theories

The Newtonian formulation has limitations which make it unsuitable for description of

several physical systems. Many different formalisms exist which generalise the Newtonian

formalism. We mention a few of these here which are useful for systems with a few degrees

of freedom. Apart from Newtonian mechanics, other formulations of mechanics are

1. Lagrangian formulation

2. Hamiltonian and Poisson brackets

3. Hamilton Jacobi formulation

Each of the above formalism will be described briefly.

Lagrangian form of classical dynamics

In the Lagrangian approach the state of a system is described by a set of generalized

coordinates and velocities. The generalized coordinates are not restricted to be Cartesian.

They are a set of independent variables qk needed to specify the system completely. The

knowledge of these variables qk, called generalized coordinates, and their time derivatives

allows us to compute all dynamical variables of the system. The dynamical laws or the

equations of motion are given in terms of a single function of generalized coordinates

and momenta, L(q, q̇, t), called Lagrangian of the system. Knowing the Lagrangian, the

equations of motion are given by

d

dt

(
∂L

∂q̇k

)
−
∂L

∂qk
= 0, k = 1, 2, . . . (2)

The Lagrangian formalism offers distinct advantages over the Newtonian formalism.
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Hamiltonian form of classical dynamics

In the Hamiltonian approach to the classical mechanics, the state of a system at time

t is described by giving the values of generalised coordinates and momenta qk, pk, (k =

1, . . . , n) at that time. The canonical momentum pk is defined as derivative of the La-

grangian of the system w.r.t. the generalised velocity q̇k:

pk =
∂L

∂q̇k
. (3)

The interaction is specified by giving Hamiltonian H(q, p) which determines the EOM.

The EOM in the Hamiltonian approach take the form

q̇k =
∂H

∂pk
, ṗk = −

∂H

∂qk
, k = 1, . . . , n. (4)

Poisson bracket formalism

For two functions F (q, p), G(q, p) of canonical variables, the Poisson bracket [F,G]PB is

defined as

[F,G]PB =
∑

k

(
∂F

∂qk

∂G

∂pk
−
∂F

∂pk

∂G

∂qk

)
. (5)

The Hamilton’s equations,Eq.(5), written in terms of Poisson brackets assume the form

q̇k = [qk,H]PB, ṗk = [pk,H]PB. (6)

In general the time evolution of any dynamical variable is given by

dF

dt
= [F,H]PB. (7)

The classical mechanics has been formulated in several different ways. We mention

the Newtonian, the Lagrangian, the Hamiltonian and the Poisson bracket formulations.

The Hamiltonian form of mechanics turns out to be the most convenient and suitable for

making a transition to quantum mechanics; the Schrodinger and Heisenberg formulations

of quantum mechanics requiring an understanding of the Hamiltonian and Poisson bracket

formulations. Frequently it is asked if Lagrangian formulation has a role in the quantum

theory ? The answer is in affirmative and the Lagrangian plays an essential role in the

Feynman path integral approach to quantum mechanics.

§1.3 Thermodynamics and statistical mechanics:

For systems consisting of a large number of particles, such as gases, the classical mechan-

ics, in the form used for point particles, , is not very useful. One needs to use statistical

methods. While thermodynamics and statistical mechanics were successful in describing
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the behaviour of a large number of systems very closely, there were some notable disagree-

ments with experiments.

When it comes to the structure of thermodynamics and statistical mechanics, they too

have the same structure that is outlined above for mechanics. Except that most of the time

we talk about equilibrium situations. Therefore, we do not quite discuss time evolution. A

discussion of time evolution of statistical systems falls under the non-equilibrium statistical

mechanics and that is very hard subject.

§2 Postulates of Quantum Mechanics

During the first three decades of the twentieth century when quantum theory was being

developed several classical concepts had to be revised. A list of major changes that took

places is as follows.

1. Discontinuous nature of physical process such as emission of radiation in Bohr

model absorption of radiation in photoelectric effect.

2. Quantization of physical observable quantities, for example angular momen-

tum and energy in Bohr model.

In quantum description, the dynamical variables are quantized, in general, they can

take only some discrete values.

3. Wave particle duality was an important change in concepts that brought in major

changes in the way we think of physical system. The fact that in quantum world both

matter and radiation have dual nature had far reaching consequences. However, It

must be remembered that the two natures are complimentary and do not manifest

themselves in any single experiment ( Bohr complimentary principle).

In addition to the above mentioned changes, the quantum theory brought many new

concepts and forced revision of several classical ideas. We recapitulate some important

classical concepts which underwent a complete revision after the quantum revolution.

• The classical theories are deterministic, once initial state is specified the motion of

the system is deterministic; out come of any measurement can be predicted.

The quantum theory is probabilistic; only probabilities of different possible outcomes

of experiments can be predicted by the theory.

• In classical theory we associate a well defined trajectory with motion of particles.

Waves are not localized and one cannot associate definite trajectories with waves.

Properties of particles and waves are incompatible properties.
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• In classical mechanics the states of a physical system are described by generalized

coordinates and momenta. This changes completely in the quantum theory.

• In classical theories there is no restriction on simultaneous measurement of a pair of

variables.

Unlike classical theories, a generalised coordinate and canonical conjugate momen-

tum can not be measured to arbitrary accuracy simultaneously. In general two

arbitrary dynamical variables cannot be measured simultaneously.

• The classical motion of particle is confined to regions where the total energy is greater

than the potential energy. A particle cannot cross a region where the potential energy

is higher than the kinetic energy.

A quantum particle can tunnel through a barrier, as is the case in alpha decay.

• In quantum world all particles and radiation have dual nature. However, The two

natures are complimentary and do not manifest themselves in any single experiment.

( Bohr complimentarity principle)

• In quantum description identical particles cannot be distinguished, they loose their

identity.

Our understanding of classical concepts requires a major shift, or even a complete

change. In addition many new concepts are brought in by the quantum theory.

In addition entire mathematical framework needed for description of quantum phe-

nomena changes. While the mathematics prerequisite for classical mechanics for solution

of problems is differential equations and partial differential equations, quantum mechanics

brings in Hilbert spaces and probability theory in an essential way.

Also note that the kind of questions that are meaningful for a classical system, do

not all remain valid questions in quantum mechanics. For example For a classical point

particle we may ask for its position and momentum at different times but not for a quantum

particle ( which is also a wave ). There are a whole host of new physically meaningful

questions that are not asked in the classical physics.

At this stage you need to remember that above ideas from classical formulations will

need a change. Why change is needed, what is the replacement , if any, and all such

questions will be dealt with at a suitable stage later,

The transition from classical to quantum mechanics is conventionally made by following

a route known as canonical quantization. This is the route we will follow. Later you might

learn that there are several routes ( 10) to quantization.

You will understand all this more clearly as you move on and learn the subject. So,

by the time we reach the end of this course, you will have understood basics of one of the

7



8

most common approach to quantum mechanics . Several revisits will be needed for you to

gain better and fuller appreciation of the subject.

. Before closing, I leave you with a quote from the quantum mechanics book by Landau

and Lifshitz [?] p3.

“Thus quantum mechanics occupies a very unusual place among physical the-

ories; it contains classical mechanics as a limiting case, yet at the same time it

requires this limiting case for its own formalism.”

Think about the statement Landau and Lifshitz make and about ‘intriguing’ relation

between the classical and quantum theories.

Why Begin With Postulates

§2.1 Why begin with postulates

The inadequacy of classical theory and efforts to explain the observed physical phenomena

led to a major revision of classical concepts and of the mathematical structure. Some

of the earliest points of departure from the classical theory were (i) discrete nature of

physical processes, as in Plancks hypothesis and (ii) quantisation of dynamical variables,

for example, angular momentum in Bohrs theory.

The wave particle duality had far reaching consequences and has changed the way we

understand and do physics. Here we will briefly highlight the important points that are

best seen to emerge from implications of wave particle duality on thought experiments.

In a double slit interference experiment for electrons, because of the dual nature we

would expect to see an interference pattern. However, when the intensity of the incident

beam is reduced to single electron at a time, we are inclined to conclude that one would see

a spot on the screen, and not an interference pattern. Still an interference pattern appears

when the experiment is repeated with a large number of times. This can be understood

only by associating a probability amplitude of electron reaching a point on the screen. It

is accepted that the a prediction about exact location of the spot for in experiment with

single electron is impossible and indeterminacy has entered in an essential way.

On similar lines, an analysis of the thought experiments on photon polarisation in the

limit of low intensities involving single photon leads to the indeterminacy of polarisation

state of a photon. This in turn introduces indeterminacy in outcomes of polarisation

measurements. Again we are led to probabilities being associated with the out come of

measurements of physical quantities. The indeterminacy is seen to arise due the state of

the photon being superposition of two different states of polarisation.

This theory of itself does not
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It has to emphasised that the suggestion here is that indeterminacy is of a fundamental

nature and not due to some limitation of of the quantum theory or of the measuring

apparatus.

An analysis of Heisenberg microscope thought experiments to measure position and

momentum of particles simultaneously leads to the Heisenberg uncertainty principle. It

asserts that the position and momentum of a particle cannot be measured simultaneously.

This is forced due to the observed dual nature of electrons and photons.

Thus we are naturally led to ask the following, and many more, questions.

• If we have to incorporate the superposition principle of quantum states, how are the

states and dynamical variables are to be described in quantum theory?

• If some dynamical variables are quantised, how are we to compute the allowed values

of dynamical variables?

• Acceptance of indeterminacy leads us to ask what is the scheme to compute the

probabilities of different possible outcomes of an experiment?

• The uncertainty principle is an out come of Heisenberg microscope thought experi-

ment and a consequence of wave particle duality. This analysis gives us no clue about

which other pairs of dynamical variables cannot be measured simultaneously. In fact

we do not have a precise mathematical formulation of the uncertainty principle; it is

not clear “How is the uncertainty in a dynamical variable even defined precisely?”

The answers to these, and many more, questions, will be obtained by an application of

the postulates of quantum mechanics. Learning the postulates also allows us maintain a

clear understanding of what is assumed and what is derived.

There are several different ways of formulating quantisation applying to physical sys-

tems. The postulates will in general appear different in different scheme. Remember that

the postulates, to be described below, give us one of several possible schemes, of ’doing’

quantum mechanics.

Learn from Masters: We strongly recommend that the reader should go through a few

pages of a terse but an illuminating discussion of superposition principle, indeterminacy,

simultaneous measurement, and related issues from the very first section of the first chapter

of Landau Lifshitz. A ’teaser’ from of this part of the book, reproduced below, should serve

as an inducement for going to the original book.



qm-lec-06002 10

This circumstance shows that, in quantum mechanics, there is no such
concept as . . . .
A complete description of the state . . . in classical mechanics . . . In quan-
tum mechanics such a description is impossible.. . .
A very important consequence follows . . . . Where as a classical descrip-
tion... with complete accuracy,. . . quantum mechanics evidently cannot
do this. . . . Hence quantum mechanics cannot ... completely definite
predictions. . . .
All measuring process in . . .may be divided into two classes.. . . .
We shall often find that by no means . . . can be measured simultaneously.
We shall now formulate the meaning of a complete description of a state
in quantum mechanics.. . .
In quantum mechanics we shall understand by the states of a quantum
system . . . .

Landau Lifshitz

§2.2 Postulates of Quantum Mechanics

1. States of physical system The state of a quantum mechanical system is represented

by a vector in a complex vector space with inner product (Hilbert Space).

The null vector does not represent any state. Two non-null vectors represent the

same state if and only if they are linearly dependent. Thus |ψ1〉 and |ψ2〉 represent

the same state if there exists a complex number c such that

|ψ2〉 = c|ψ1〉 (8)

A vector that represents state of physical system will be called state vector. The

quantum mechanical states represented by vectors in Hilbert space are called pure

states. There are other possible states which are called mixed states. These are rep-

resented by a density matrix ρ. The density matrix is an operator having properties

that it is hermitian and that its eigenvalues are bewteen 0 and 1. A density matrix

ρ corresponds to a pure state if and only if ρ2 = ρ.

2. Dynamical Variables The dynamical variables of a physical system are represented by

linear operators in the vector space.

A linear operator representing a dynamical variable must have real eigenvalues and

their eigenvectors must form a complete set. These properties are satisfied by self

adjoint operators (hermitian operators). So we demand that the dynamical variables

be represented by self adjoint operators in Hilbert space. An operator representing

a dynamical variable will also be called an observable.
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3. Measurement postulate and probabilities If the system is in a state |(〉ψ), a measure-

ment of dynamical variable A will give one of its eigenvalues αk with probability

equal to |〈uk|ψ〉|
2, where |uk〉 is the eigenvector of Â corresponding to eigenvalue αk.

1

A result of any measurement of a dynamical variable is one of the eigenvalues of the

corresponding operator. Conversely, every eigenvalue of an observable representing

a dynamical variable is a possible result of a measurement of the dynamical variable.

As an example, let |u1〉, |u2〉, · · · , |un〉 represent the eigenvectors of an observable

Â. If the state vector of a physical system, |ui〉, is an eigenvector of an operator Â

representing a dynamical variable A, a measurement of the dynamical variable gives

value α with probability 1. Here α is the eigenvalue of Â corresponding the eigen-

vector |ui〉. Conversely, if the measurement of A gives the value α with probability

1, the state of system will be represented by a vector which will be eigenvector of

the operator Â corresponding to the eigenvalue α.

In general state vector |ψ〉 will not be an eigenvector of the given dynamical variable.

In such a case a measurement of the variable A will results in values α1, α2, · · · , αn

with probabilities c1|α2〉, c1|α2〉, · · · , cn|αn〉 where c1, c2, · · · , cn are the coefficients

in the expansion of the state vector |ψ〉

|ψ〉 =
∑

k

ck|uk〉 (9)

in terms of eigenvectors of Â.

Here |ψ〉 and |uk〉 are assumed to be normalized.

〈ψ|ψ〉 = 1; 〈uk|uk〉 = 1, k = 1, 2, . . . (10)

4. Commutation relations The operators corresponding to the generalized coordinates and

momenta {qk, pk} of a classical system satisfy

q̂iq̂j − q̂j q̂i = 0 (11)

p̂ip̂j − p̂j p̂i = 0 (12)

q̂ip̂j − p̂j q̂i = i~δij (13)

The above relations are called canonical commutation relations.

1Requires modification when eigenvalues of A are degenerate.
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5. Equation of motionThe time development of a system is governed by the Schrodinger

equation

i~
d

dt
|ψt〉 = Ĥ|ψt〉 (14)

where |ψt〉 is the state vector of the system at time t and Ĥ is the operator repre-

senting the Hamiltonian of the system.

6. Symmetrization postulate for identical particles For a system of identical particles, the

state of the system remains unchanged under exchange of a pair of particles, it should

be either symmetric or antisymmetric under an exchange of all the variables of the

two identical particles.2

§3 Superposition Principle

§3.1 Photon polarization experiment

Certain crystals, for example tourmaline, have a preferred axis, call it passing axis. When

a light beam is incident on a such a crystal, it which allows light vibrations parallel

to its optic axis to pass and absorbs all the vibrations which are perpendicular to the

passing axis. By rotating the crystal, we can get a beam which is polarised along different

directions.

Now consider unpolarised light incident on a tourmaline crystal. The vibrations of the

beam coming out of the crystal will be along the preferred axis of the tourmaline crystal.

Let this beam be allowed to pass through a similar second crystal. Let the second crystal

be placed with its passing axis parallel to that of the first crystal. All the light coming

out of the first one will have vibrations parallel to the passing axis of the second crystal

and will be fully transmitted through the second crystal too.

Next, if the first crystal is rotated by π/2, no light will pass through the second

crystal. In case the angle of rotation of the first crystal is α 6= π/2, the light from the

first crystal will be obliquely polarised and a fraction cos2 α of the incident intensity will

be transmitted.

Next, we consider the same arrangement with the passing axes of the two crystals at

a certain angle. Let the intensity of the incident beam so low that at any time only one

photon passes through the apparatus. It is obvious that when the two axes are parallel,

the photon will be transmitted through the apparatus and that it will be absorbed, when

the two axes are perpendicular.

What do we expect when the photon incident on the second crystal with its passing

axis making an angle α 6= 0, π/2 with the passing axis of first crystal.

From what is known in wave theory, one cannot conclude anything about the outcome

of this experiment. Certainly, we cannot say that a part of photon is transmitted and a

2T&C apply
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part is absorbed; because the photon is indivisible! However, when we wait for a long time,

we will find that a fraction cos2α , of the total number photons incident on the second

crystal, will pass through. Therefore, all that can be said about the single photon is that

sometimes it will pass through the second crystal and sometimes it will get absorbed.

What can we say about the states of photon in the three cases of parallel, perpendicular

and oblique polarisation? In order to explain the outcome of the experiment for a large

number of photons, it must be admitted that the photon in oblique polarisation is partly in

the state with parallel polarisation and partly in the state with perpendicular polarisation.

Obviously, every polarisation state of photon must then be regarded as a superposition of

states of polarisation along two perpendicular directions.

This superposition of states comes with indeterminacy that no prediction is possible about

the outcome of an experiment involving a single photon, only the outcome of experiment

repeated several times can be predicted.

For a single photon with oblique polarisation, one is forced to assign a probability of getting

transmitted or absorbed. One arrives at similar conclusions by analysis of other thought

experiments involving electrons. For an electron a Stern Gerlach set up acts exactly like

a tourmaline crystal for the photons. .

Here is what Dirac has to say about non classical nature of superposition principle

Fig. 1 Dirac-Page 13

Dirac summarises discussion of photon polarisation experiment by saying that super-
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position leads to indeterminacy in quantum case and hence it is different from that in

classical Physics.

Fig. 2 Dirac-Page13

§3.2 Double slit experiment with electrons

Before starting to read this thought experiment, it is a good idea to revise3 thought

experiments with bullets, and remember what would happen for the classical particles.

Let us first consider a double slit experiment can be done with one of the two slits can

be kept open for half the time. The second slit is kept open for remaining half the time

and the experiment is repeated. In this one will not get the interference pattern as in the

case when both the slits are kept open. What is observed is just the combined distribution

for two single slits. One would see the same pattern even if the experiment is done with

very very low intensity beams, sending one electron at a time. In this case the behaviour

of electrons is no different from bullets.

In a double slit interference experiment for electrons we would expect to see an interfer-

ence pattern as is the case for any wave. However, when the intensity of the incident beam

is reduced and we seek the result of the experiment performed with a single electron, we

are inclined to conclude that one would see a spot on the screen, and not an interference

pattern, due to indivisibility of the particle nature. Still an interference pattern appears

when the experiment is repeated with a large number of times.

The double slit experiment shows that the quantum dual behaviour of electron is

different from what is expected of classical particles such as bullets. It is also different

from what is expected of waves in the classical theory.

When both the slits are kept open, it makes no difference what the beam intensity

is. The interference experiment is done sending one electron at one time or having an

3A K Kapoor, QM-01:Classical Theories Revisited §1.3
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intense beam. In a manner similar to the photon polarisation experiment. the results can

be understood only by considering the ’translational’ state of the electron as superposition

of two states corresponding to electron passing through one of the two slits.

Within the accepted interpretations of quantum mechanics, this is explained by asso-

ciating a probability amplitude of electron reaching a point on the screen and accepting

that a prediction about the exact location of the spot in experiment with single electron is

impossible and indeterminacy has entered in an essential way. It has to emphasised that

the suggestion here is that indeterminacy is of fundamental nature of physical systems. It

is neither due to limitation of the quantum theory nor due to a limitation of a measuring

device.

We strongly recommend the reader to to go through the relevant section so the books

by Dirac[?] and Feynman [?].

However, one may still ask whether the quantum theory is complete in its present form

and if the unusual features appear due to the restrictions on the domain of application such

as nonrelativistic situations. We shall not dwell upon these and other similar questions

here, as a meaningful discussion is beyond the scope of these lecture notes.

Food for your thought

In classical mechanics the state of physical system are described by specifying simultaneous

values of coordinates and momenta.

An analysis of thought several experiments to measure position and momentum of

particles leads to the Heisenberg uncertainty principle which asserts that the position

and momentum of a particle cannot be measured simultaneously. This happens due to

an uncontrollable disturbance, usually in momentum (position), when a measurement of

position (momentum) is made.We are then naturally led to ask how are the states and

dynamical variables are to described in quantum theory?

Early developments suggested that in general dynamical variables are quantised. We

must then face several questions how do we compute the allowed values of dynamical vari-

ables which may be quantised? What is the method to compute the probabilities of different

possible outcomes of an experiment?

The polarisation and interference thought experiments involving the photon and elec-

trons leads to the superposition principle of quantum states. In what way can the super-

position principle be formulated mathematically.

Since the thought experiments suggest that only probabilities of outcomes of experi-

ments involving single electron or a single photon can be predicted. How does one compute

the probabilities?

The answers to all such questions can, in principle, be obtained by appealing to the

postulates of quantum mechanics.
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Flagged for revision

We end this short introduction with quotes from Feynman:

Fig. 3 Feynman-§1-10

The double slit experiment, that Feynman said has never been done, has actually been

performed. A detailed information about the double slit experiment with low intensity

beams can be found in the article Peter Rodgers in September (2001) issue of Physics

World.

Notes and References

It is strongly recommended that the reader should go through the following sections of

the books by Dirac and Feynman.

• The polarization of photons, Dirac [?], §2

• Interference of photons, Dirac [?]. §3

• Superposition and Indeterminacy, Dirac [?] §4

In this section compelling reasons for superposition of quantum states are given.

• An experiment with electrons, Feynman [?], §1-4

• The interference of electron waves, Feynman [?] §1-5.

• Watching the electrons, Feynman [?] §1-6

• First principle of quantum mechanics, Feynman [?]: §1-7. Feynman presents a short

summary of conclusions of the thought experiments.
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§4 Probability and Average Value

§4.1 The Third Postulate

The third postulate has several parts. In this section we use the notation A to denote a

dynamical variable, Â will denote the corresponding hermitian operator. The eigenvalues

will be real and it is assumed that the eigenvectors have been chosen to be orthonormal.

If we denote the eigenvalues of Â by α1, α2, . . . , αk, . . . and the corresponding orthonormal

eigenvectors by |u1〉, |u2〉, . . . , |uk〉, . . . then we have

A|uk〉 = αk|uk〉, 〈uk|um〉 = δkm. (15)

1. The first part of the third postulate says that the only outcome of a measurement

of a dynamical variable A is one of the eigenvalues of the corresponding operator Â.

Thus, if an experiment to measure a dynamical variable A is performed, the result

must be only one of the eigenvalues αk. In particular, an answer different, from

every eigenvalue, cannot be the outcome of measurement of A.

2. The next part of the postulate tells that if a system is represented by one of the eigen-

vectors |un〉, a measurement of the dynamical variable A will give the corresponding

eigenvalue αn.

3. The third postulate also tells us about the outcome of measurement of A when the

state vector |ψ〉 is not an eigenvector of Â. In this case, the result is some times

one eigenvalue and sometimes another. We cannot predict the result of a single

measurement fully. When repeated measurements are made, different eigenvalues

αn will be obtained with different probabilities pn which can be predicted.

To compute the probabilities pn, we first expand the state vector |ψ〉 in terms of the

eigenvectors of the operator Â corresponding to the dynamical variable A which is

being measured and write

|ψ〉 =
∑

k

ck|uk〉. (16)

Then the probability pk of getting value αk is given by |ck|
2. We continue to assume

that the state vector |ψ〉 and the eigenvectors |uk〉 are orthogonal ,i.e,,

〈ψ|ψ〉 = 1, 〈uk|uk〉 = 1 (17)

4. How do we compute the coefficients ck in Eq.(17)? The eigenvectors of a hermitian

operator are orthogonal and this helps in computing the coefficients. Taking scalar

product of Eq.(16) with |un〉 gives

〈uk|ψ〉 =
∑

n

ck〈uk|un〉 =
∑

n

cnδkn = ck (18)
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Note that, in the right hand side of Eq.(18), only the term with k = n survives, all

other terms where n 6= k will vanish due to orthogonality property of the eigenvec-

tors.

∴ ck = 〈uk|ψ〉 (19)

and

pk = |ck|
2 = |〈uk|ψ〉|

2 (20)

5. The Parseval relation

〈ψ|ψ〉 =
∑

k

|ck|
2 (21)

implies that ∑

k

|ck|
2 = 1 =⇒

∑

k

pk = 1. (22)

if the state vector |ψ〉 is normalised, 〈ψ|ψ〉 = 1. This suggests that the interpretation

of expressions |ck|
2 as probabilities pk is consistent with the requirement that the

sum of all probabilities be equal to unity. We shall call the coefficient ck as the

probability amplitude for obtaining a value αk for the dynamical variable A when

the system is in state |ψ〉.

As a consequence of the dual nature of matter and radiation, we have indeterminacy

in the theoretical predictions. The origin of this indeterminacy can be traced to the

superposition principle which in turn is needed to incorporate the wave nature of matter.

In classical mechanics the result of measurement of position, momenta, and every other

dynamical variables, can be fully predicted. This is no longer true in quantum theory.

Here is a summary.

Remarks

• A single measurement of A does not lead to a definite answer when the state vector

is not an eigenvector Â.

• In general, a result of a measurement of A must be one of the eigenvalues. The

outcome of a single experiment is indeterminate, and the quantum theory is proba-

bilistic by its nature in contrast to the classical theory which is deterministic. When

measurement is repeated several times, we will sometimes get an eigenvalue αj some-

times some other eigenvalue αk, and only the probabilities of each outcome can be

predicted.

• A simple consequence of the above discussion is that a measurement of a dynamical

variable A will give a value αm with probability 1 if and only if the state is represented

by corresponding eigenvector |um〉.



QM-Lecs-06 19

• It must be remembered that some obvious changes, described later at the end of the

next section, will be needed when the eigenvalues of Â are continuous.

• Finally, we leave it as an exercise for you to convince yourself that the assumption

about the probabilities, as stated above, is correctly contained in the the following

statement. Given that the system is in a state described by the state vector |ψ〉, the

probability that it will be found in the state given by the vector |φ〉 is equal to |〈φ|ψ〉|2.

§4.2 Probabilities and Average Values

Let A denote a dynamical variable and Â the corresponding hermitian operator repre-

senting A in quantum mechanics.Let |un〉 be normalised eigenvector of Â with eigenvalue

αn.

Â|un〉 = αn |un〉 (23)

These eigenvectors, being eigenvectors of a hermitian operator, will satisfy the orthogo-

nality relation

〈um|un〉 = δmn. (24)

If several repeated measurements are made on a system with state vector |ψ〉, one would

get αk with probability

pk = |ck|
2, where ck = 〈uk|ψ〉. (25)

The average of results of measurements of A in the state |ψ〉, to be denoted by 〈A〉ψ , will

then be given by

〈A〉ψ =
∑

k

pkαk =
∑

k

αk |ck|
2. (26)

We will now show that the above expression coincides with 〈ψ|Â|ψ〉. Without loss of gen-

erality, we may assume that the state vector |ψ〉 and the eigenvectors |uk〉 are normalised.

To prove this result we recall that ck are the expansion coefficients

|ψ〉 =
∑

k

ck|uk〉 (27)

and make use of orthonormal property (24) to compute 〈ψ|Â|ψ〉.

〈ψ|Â|ψ〉 = (ψ, Âψ) (28)

= (ψ, Â
∑

k

ckuk) =
∑

k

ck(ψ, Â uk) (29)

=
∑

k

ck (ψ, αk uk) =
∑

k

ck αk(ψ, uk) (30)

=
∑

k

ck αk c̄k =
∑

k

αk |ck|
2. (31)
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which is seen to be equal to the average 〈A〉ψ from Eq.(26). When the state vector |ψ〉 is

not normalised, the average value will be given by

〈A〉ψ =
〈ψ|Â|ψ〉

〈ψ|ψ〉
. (32)

Case of continuous eigenvalues: So far our discussion has been restricted to the case

when the eigenvalues of Â are discrete. Now consider the case when the eigenvalues α

of Â are continuous and the corresponding eigenvectors |α〉 are normalised to Dirac delta

function

〈α|α′〉 = δ(α − α′). (33)

In this case the probability that a measurement of A will give a value in a small range α

and α+ dα is equal to |〈α|ψ〉|2dα. For probability of finding the result in between a and

b, we would have the answer
∫ b
a |〈α|ψ〉|

2dα.

§5 Canonical Quantization

§5.1 Introduction

The first three postulates of quantum mechanics give a general framework applicable to

any physical system. The first and the second postulates are about the mathematical

structure of the quantum theory. These two postulates furnish a description of states

and dynamical variables of quantum systems. The third postulate makes contact with

experiments and talks about the possible outcomes of result of a measurement. Recall that

while the second postulate says that the dynamical variables of a theory are represented

by hermitian operators, no clue is provided in the first three postulates about properties

of these operators. For example, the generalised coordinate and canonical momentum

variables in quantum theory are replaced by operators, which we denote will by q̂ and

p̂. However, the rules to manipulate these operators must be formulated. In general, the

product of two operators depends on the order in which they are multiplied, so information

about their commutator will be useful.

The canonical quantisation rules(CCR) are important assumptions about the commu-

tation relations of operators that represent position and momentum, and more generally,

about the commutation relations obeyed by a pair of operators representing generalised

coordinate and canonical conjugate momentum.

The CCR are extremely powerful statements about the operators. In principles CCR

together with other postulates make almost all computations in quantum mechanics pos-

sible using algebraic methods, and no further information is needed.
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§5.2 Canonical commutation relations

Let q1, q2, ..., qN be generalised coordinates of a classical system having N degrees of free-

dom and let the corresponding canonical conjugate momenta be denoted by p1, p2, ..., pN .

The canonical quantisation procedure consists in assuming that the corresponding opera-

tors satisfy the following canonical commutation relations (CCR).

[q̂i, q̂j] = 0; [p̂i, p̂j ] = 0, (34)

[q̂i, p̂j ] = i~δij . (35)

It should be noted that ~ has the correct dimension of product qkpk and that the

commutators in Eq.(34)-( (35) ) are i~ times the corresponding Poisson brackets in the

classical theory.

The canonical commutation rules for a particle in one dimension, the operators q̂, p̂,

corresponding the generalised coordinate and momentum take the form

[q, p] = i~. (36)

For a particle in three dimensions the position and momenta are x, y, z, px, py, pz and

the nonzero commutators are

[x̂, p̂x] = [ŷ, p̂y] = [ẑ, p̂z] = i~, (37)

and the commutators of all other pairs of operators are zero. For general dynamical

variables, other than coordinates and momenta, one has the following correspondence

between the commutators and Poisson brackets in the limit ~0.

lim
~→0

[F̂ , Ĝ] = i~{F,G}P.B.. (38)

Here F̂ , Ĝ represent opertors associated with the classical dynamical variables F,G

which will be functions of the generalised coondinates and canonical momenta.

Question for You: How do you understand that a factor i~ should appear in the righthand

side of Eq.(38)?

§5.3 General Form of Uncertainty Relation

For a particle in one dimension, the Heisenberg uncertainty relation

∆x∆p ≥
~

2
, (39)



Module nn /Package nn - qm-lec-07003 22

using the canonical commutation relation

[x̂, p̂] = i~Î , (40)

where Î is the identity operator. The position momentum uncertainty relation is a special

case of generalised relation

(∆A)ψ(∆B)ψ ≥
~

2
|〈ψ|C|ψ〉| (41)

for two hermitian operators A,B having the commutator [A,B] = iC.

Definitions and properties of uncertainty ∆X

Several definitions and properties of uncertainty will be presented.

Definition 1: Assuming state vector |ψ〉 to be normalized, the average of a dynamical

variable in the state |ψ〉 is given by 〈ψ|X|ψ〉. The uncertainty of a physical quantity X in

a state ψ will be denoted as (∆X)ψ and is defined by

(∆X)2ψ = 〈ψ|X̂2|ψ〉 − (〈ψ|X̂ |ψ〉)2 ≡ X2
ψ −X

2

ψ, (42)

where notations Xψ and 〈X〉ψ , both will be used to denote the average of an observable

X in state ψ and omit the suffix ψ to simplify intermediate steps.

Defintion 2: The uncertainty ∆X, as given in (42) can be written in alternative form

as

(∆X)2ψ = 〈(X̂ −X)2〉ψ. (43)

TO see this note that

(∆X)2ψ = 〈(X̂ −X)2〉ψ (44)

= 〈ψ|(X̂ −X)2|ψ〉 (45)

= 〈ψ|X̂2 − X̂X −XX̂ +X
2
|ψ〉 (46)

= 〈ψ|X̂2 − 2XX̂ +X
2
|ψ〉 (47)

= 〈ψ|X̂2|ψ〉 − 〈ψ| 2XX̂ |ψ〉+ 〈ψ|X
2
|ψ〉 (48)

= 〈ψ|X̂2|ψ〉 − 2X 〈ψ|X̂ |ψ〉+X
2
〈ψ|ψ〉 = (X2)− 2X

2
+X

2
(49)

= (X2)−X
2

(50)

Defintion 3: The above alternate definition can be cast in a useful form. Remembering

the X is a physical quantity and hence X̂ is hermitian. Therefore the average value of X̄ψ

will be real and hence

(X̂ − X̄)† = (X̂† − X̄∗) = (X̂ − X̄). (51)
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We will now show that uncertainty ∆X can be also defined as

(∆X)ψ = ‖(X̂ − X̄)ψ‖ (52)

Consider the right hand expression and then we have

‖(X̂ − X̄)ψ‖2 =
(
(X̂ − X̄)ψ, (X̂ − X̄)ψ

)
(53)

= (ψ, (X̂ − X̄)†(X̂ − X̄)ψ) (54)

= (ψ, (X̂ − X̄)2ψ) (55)

∴ 〈(X̂ − X̄)2〉ψ = ‖(X̂ − X̄)ψ‖2 (56)

Substituting the above expression in the right hand side of (43), we get the third

expression (52) for the uncertainty ∆X.

It follows from the (52) that the uncertainty of a dynamical variable X in a state |ψ〉

is zero if and only if Norm equals to zero iff vector equals to zero ,

(X̂ −X)|ψ〉 = 0 (57)

orX̂|ψ〉 = X |ψ〉. (58)

This implies that the state |ψ〉 must be an eigenstate of the operator X̂ .

Generalized uncertainty relation

We will now prove the generalised uncertainty relation given in Eq.(41). To simplify

our notation we drop the suffix ψ in expressions for uncertainties and averages. We also

stop using Â etc for operators. Thus in the following A,B,C appearing in mathematical

expressions will stand for the operators.

As a first step, in derivation of Eq.(41), we use the Cauchy Schwarz inequality

‖f‖2‖g‖2 ≥ |〈f |g〉|2, (59)

with |f〉 = (A− Ā)|ψ〉, and |g〉 = (B− B̄)|ψ〉. So we have , since A and B are hermitian ,

〈f | = 〈ψ|(A† − Ā∗) = 〈ψ|(A− Ā) (60)

〈g| = 〈ψ|(B† − B̄∗) = 〈ψ|(B − B̄) (61)

and therefore

‖f‖2 = 〈f |f〉 = 〈ψ|(A − Ā)2|ψ〉, (62)

‖g‖2 = 〈g|g〉 = 〈ψ|(B − B̄)2|ψ〉, (63)

〈f |g〉 = 〈ψ|(A − Ā)(B − B̄)|ψ〉. (64)

Inserting these expressions into Cauchy Schwartz inequality, Eq.(59), we get

(∆A)2(∆B)2 ≥ |〈ψ|(A − Ā)(B − B̄)|ψ〉|2 ≡ |〈ψ|X|ψ〉|2 , (65)
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where we have used X to denote the operator expression (A − Ā)(B − B̄). We write

the operator X as a sum of commutator and anticommutator of operators (A − Ā) and

(B − B̄):

X = (A− Ā)(B − B̄) =
1

2
[(A− Ā), (B − B̄)]−++

1

2
[(A− Ā), (B − B̄)]− (66)

using XY = 1

2
[X,Y ]+ + 1

2
[X,Y ]− (67)

=
1

2
[(A− Ā), (B − B̄)]+ +

i

2
C. (68)

This splitting of X into two parts allows us to separate the real and imaginary parts of

〈ψ|X|ψ〉 and to compute its absolute square needed in Eq.(65):

〈ψ|X|ψ〉 =
1

2
〈ψ|[(A − Ā), (B − B̄)]+|ψ〉︸ ︷︷ ︸+

i

2
〈ψ|C|ψ〉︸ ︷︷ ︸ . (69)

Both the quantities marked with braces,being average values of hermitian operators, are

real. Hence

|〈ψ|X|ψ〉|2 =
1

4
|〈ψ|[(A − Ā), (B − B̄)]+|ψ〉|

2 +
1

4
|〈ψ|C|ψ〉|2. (70)

Therefore, the inequality Eq.(65) becomes

(∆A)2(∆B)2 ≥
1

4
|〈ψ|[(A − Ā), (B − B̄)]+|ψ〉|

2 +
1

4
|〈ψ|C|ψ〉|2 (71)

∴ (∆A)2(∆B)2 ≥
1

4
|〈ψ|C|ψ〉|2. (72)

This gives us the desired generalised form of uncertainty relation

∆A∆B ≥
1

2
〈C〉ψ. (73)

For position and momentum [x̂, p̂] = −~, and hence we have

(∆x)ψ (∆p)ψ ≥
~

2
.〈ψ|C|ψ〉 (74)

Minimum uncertainty states

Let us now ask,“Which states will have the minimum value of the uncertainty product?” Going

back to the first step and analysing the proof, for equality to hold in the uncertainty

relation (73), the Cauchy Schwarz inequality, Eq.(59), must become equality. This will

be the case if and only if |f〉 = λ|g〉, for some complex number λ. In addition to this,

the average of the anticommutator in Eq.(71) should zero. Thus necessary and sufficient

conditions for state |ψ〉 to be state with minimum uncertainty becomes

(A− Ā)|ψ〉 = λ(B − B̄)|ψ〉, [(A− Ā), (B − B̄)]+|ψ〉 = 0. (75)
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§6 Simultaneous Measurement

§6.1 Compatible Observables

Let A and B be two dynamical variables, Â, B̂ be the corresponding operators, αj, j =

1, 2, . . . and βk, k = 1, 2, . . . be their eigenvalues.

Let us assume that A and B can be measured simultaneously. This means there are

states in which these variables have definite values αj, βk, j, k = 1, 2, . . ..The corresponding

vectors |αj, βk〉 must then be simultaneous eigenvectors of the the two operators.

Â|αj , βk〉 = αj |αj , βk〉, B̂|αj , βk〉 = βk|αj , βk〉 (76)

In order that the probability of getting pair of values αj , βk for all pairs j, k be given by the

postulate III, it should be possible to write an arbitrary vector |ψ〉 as linear combination

of these vectors B = {|αj , βk〉|j = 1, 2, ..., k = 1, 2, ...} and these states must form a basis.

Now it is easy to show that the action of ÂB̂ − B̂Â on each of these vectors in the set

B is zero. In fact

(
ÂB̂ − B̂Â

)
|αj , βk〉 = ÂB̂|αj , βk〉 − B̂Â|αj , βk〉 (77)

= Âβk|αj , βk〉 − B̂αj |αj , βk〉 (78)

= αjβk|αj , βk〉 − βkαj |αj , βk〉 (79)

= 0. (80)

Thus we have proved that the action of commutator [Â, B̂] on every element of basis B

results in zero. This implies that [Â, B̂] = 0 and the two operators Â, B̂ must commute.

Conversely, if two hermitian operators commute, one can select a basis of orthonormal

vectors which are simultaneous eigenvectors of the two operators.

The above considerations generalize to several dynamical variables.

A set of operators {Âk, k = 1, 2, . . .} is called commuting set if every pair of operators

Âℓ, Âm commute, i.e.

[Âℓ, Âm] = 0 for all pairsℓ,m. (81)

A set of dynamical variables {Ak, k = 1, 2, . . .} is called a compatible set if the cor-

responding set of operators {Âk, k = 1, 2, . . .} is a commuting set of operators. It then

follows that

Remember

“A set of dynamical variables an be can be measured simultaneously if and

only if they commute pairwise. In other words they should form a compatible

set.”
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§6.2 Functions of Operators

Let X̂ be an operator which has eigenvalues and eigenvectors {λk, |uk〉|k = 1, 2, ...}. Let us

further assume that the span of eigenvectors of X̂ is entire vector space. Then a function

F̂ (X) of the operator X̂ is defined by specifying its action on the basis formed by the

eigenvectors B = {|uk〉|k = 1, 2, ...}

F̂ (X)|uk〉 ≡ F (λk)|uk〉, k = 1, 2, . . . . (82)

The action of the function F̂ (X) on an arbitrary vector |ψ〉 is obtained, as usual, by

expanding the vector |ψ〉 in the basis B:

|ψ〉 =
∑

k

ck|uk〉 (83)

F̂ (X)|ψ〉 =
∑

ckF (λk)|uk〉. (84)

As the hermitian operators and unitary operators have a complete set of orthonormal

eigenvectors, their functions are defined by the method outlined above.

It is a simple exercise to show that if an operator Ŷ commutes with X̂ , it commutes

with every function of X̂.

Complete commuting set: A set S of operators is called complete commuting set if

it is a commuting set and if any operator which commutes with every member of the set

S can be written as function of the operators in the set S .

The concept of complete commuting set is important in choosing a basis and working

with representations as against with abstract vector space.

For more details, we refer the reader to

T. F. Jordan,Linear Operators for Quantum Mechanics, John Wiley and Sons, New

York(1969)

§6.3 Setting up a Representation

Section on representation to be brought here

§7 Time Evolution

§7.1 Time development in quantum mechanics

Description of state of a quantum mechanical system at one time is by state vector in the

Hilbert space.As the system evolves this state vector will change. General requirements

on time evolution lead to time evolution governed by unitary operator and for short times

by a hermitian operator H which will be identified with Hamiltonian of the system.



Module nn /Package nn - qm-lec-07003 27

Let |ψt0〉 represent the state of system at time t0 and |ψt〉 represent the state at time t.

We assume that |ψt0〉 at time t0 determines the state at time t completely. The principle

of superposition should apply at these two times t0 and t. If we have a relation at time t0

|ψt0〉 = α|χt0〉+ β|φt0〉 (85)

between three possible states,|ψ〉, |χ〉, |φ〉, the same relation must hold at all times t > t0

when the system is left undisturbed

|ψ(t)〉 = α|χt〉+ β|φt〉 (86)

Thus if we write

|ψt〉 = U(t, t0)|ψt0〉 etc. (87)

Then U(t, t0) must be a linear operator independent of ψ. Obviously U must reduce to

the identity operator at time t = t0

U(t0, t0) = I . (88)

Next we demand that the norm of vector |ψt〉 should not change with time and hence

〈ψt|ψt〉 = 〈ψt0|ψt0〉 for all t (89)

The above requirements (2) and (5), respectively, imply that the operator U must be a

linear operator and that it must be unitary.

UU † = U †U = I (90)

We shall now derive a differential equation satisfied by the state vector at time t. We,

therefore, compute

d

dt
|ψt〉 = lim

∆t→0

|ψt+∆t)〉 − |ψt〉

∆t

= lim
∆t→0

(U(t+∆t, t)− I)

∆t
|ψt〉 (91)

or
d

dt
|ψt〉 = X̂|ψt〉 (92)

where X̂(t) = lim
∆t→0

U(t+∆t, t)− I

∆t
(8”)

=
d

dt′
U(t, t′)|t′=t

The operator X̂ can be shown to be anti-hermitian and hence with notation H(t) ≡

X/(i~),H(t) will be hermitian. We therefore write Eq.(92) as

i~
d

dt
|ψt〉 = Ĥ(t)|ψt〉 (93)
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where

Ĥ(t) =
1

i~

∂

∂t
U(t, t′)|t′=t (94)

We shall now check that H(t) must be a hermitian operator. Consider Link[?]

U †(t, t′)U(t, t′) = I (95)

Differentiating w.r.t. t we get

{
∂

∂t
U †(t, t′)

}
U(t, t′) + U †

{
∂

∂t
U(t, t′)

}
= 0 (96)

Setting t′ = t and using U(t, t) = I we have

d

dt
U †(t, t′)|t′=t +

d

dt
U(t, t′)|t′=t = 0 (97)

or (
1

i~
Ĥ)† +

1

i~
Ĥ) = 0 (98)

or − iĤ† + Ĥ = 0 (99)

or Ĥ† = Ĥ (100)

Thus the time evolution of a quantum system is governed by the equation

i~
∂

∂t
|ψt〉 = Ĥ(t)|ψt〉 (101)

Using correspondence with classical mechanics, Dirac shows that the operator Ĥ the

represents the energy (or the Hamiltonian) of the system. ( See §2 below and the discussion

in the end of this section.) Using (3) in (18) we get

i~
∂

∂t
U(t, t0)|ψt0〉 = Ĥ(t)U(t, t0)|ψt0〉 (102)

This equation must hold for all vectors |ψ >. Hence the time evolution operator U must

satisfy the differential equation

i~
∂

∂t
U(t, t0) = Ĥ(t)U(t, t0) . (103)

§7.2 Time development of averages

Time variation of average values

The time evolution of a quantum system is governed by the Schrodinger equation

i~
d

dt
|ψt〉 = Ĥ|ψt〉. (104)
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We will obtain an equation for time development of averages of a dynamical variable F̂

The result will turn out to have an obvious correspondence with the classical equation of

motion for dynamical variable F . This then will suggest the identification of Ĥ as the

operator representing the Hamiltonian of the system.

Let F (q, p, t) be an dynamical variable of the system and let F̂ denote the corresponding

operator. We are interested in finding out how the average value

〈F̂ 〉 ≡ 〈ψt|F̂ |ψt〉 (105)

changes with time. The time dependence of the average value comes from dependence of

the three objects, the operatorF̂ , the bra vector 〈ψt|, and the ket vector |ψt〉, present in

Eq.(105). The equation conjugate to the Schrodinger equation

i~
d

dt
|ψt〉 = Ĥ|ψt〉 (106)

is given by

− i~
d

dt
〈ψt| = 〈ψt|Ĥ† (107)

Since the operator Ĥ is hermitian, the above equation takes the form

− i~
d

dt
〈ψt| = 〈ψt|Ĥ (108)

Therefore
d

dt
〈F̂ 〉 =

(
d

dt
〈ψt|

)
F̂ |ψt〉+ 〈ψt|

dF̂

dt
|ψt〉+ 〈ψt|F̂

(
d

dt
|ψt〉

)
(109)

Using Eq.(107) and Eq.(108) in Eq.(109) we get

d

dt
〈F̂ 〉 = −

1

i~
〈ψt|ĤF̂ |ψt〉+ 〈ψt|

dF̂

dt
|ψt〉 +

1

i~
〈ψt|F̂ Ĥ|ψt〉 (110)

The above equation is rearranged to give the final form

d

dt
〈F̂ 〉 = 〈

∂

∂t
F̂ 〉+

1

i~
〈 [F̂ , Ĥ] 〉 (111)

This result is known as Ehrenfest theorem. Comparing the Eq.(111) with the equation of

motion in classical mechanics for time evolution of dynamical variables

dF

dt
=
∂F

∂t
+ {F,H}PB (112)

and remembering that the commutator divided by i~ corresponds to the Poisson bracket

in the limit ~ → 0, we see that Ĥ must be identified as the operator corresponding to the

Hamiltonian H of the system.
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§7.3 Solution of time dependent Schrödinger equation.

A scheme to solve the time dependent Schrödinger equation

i~
d

dt
|ψ〉 = Ĥ|ψ〉 (113)

is described. The solution will be presented in the form

|ψt〉 = U(t, t0)|ψt0〉 (114)

For our present discussion, it will be assumed that the Hamiltonian Ĥ does

not depend on time explicitly. Let the state vector of system at initial time

t = 0 be denoted by |ψ0〉.

Since Ĥ is always assumed to be hermitian, its eigenvectors form an orthonormal com-

plete set and we can expand the state vector at time t, |ψt〉, in terms of the eigenvectors.

Denoting the normalized eigenvectors by |En〉, we write

|ψt〉 =
∑

n

cn(t)|En〉. (115)

where the constants cn(t) are to be determined. Substituting (115) in (113) we get

i~
d

dt

∑

n

cn(t)|En〉 = Ĥ|ψt〉 (116)

i
∑

n

~
dcn(t)

dt
|En〉 =

∑

n

cn(t)Ĥ|En〉 (117)

Taking scalar product with |Em〉 and using orthonormal property of the eigenvectors |En〉,

we get

i~
dcm(t)

dt
= Emcm(t). (118)

which is easily solved to give

cm(t) = cm(0)e
−iEmt/~. (119)

Therefore, |ψt〉,the solution of time dependent equation becomes

|ψt〉 =
∑

m

cm(0)e
−iEmt/~.|Em〉. (120)

The coefficients cm(0) are determined in terms of the state vector |ψ0〉 at time t = 0 by

setting time t = 0 in the above equation. This gives

|ψ0〉 =
∑

n

cn(0)|En〉. (121)
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The unknown coefficients cn(0) can now be computed; taking scalar product of Eq.(121),

with |Em〉 we get

cm(0) = 〈Em|ψ0〉. (122)

Thus Eq.(120) and (122) give the solution of the time dependent Schrödinger equation as

|ψt〉 =
∑

n

cn(0) exp(−i~Ent)|En〉 . (123)

The right hand side of the above equation can be rewritten as

∑

n

cn(0) exp(−i~Ent)|En〉 =
∑

n

cn(0) exp(−i~Ht)|En〉 (124)

= exp(−i~Ht).
∑

n

cn(0)|En〉 (125)

Therefore Eq.(123) takes the form

|ψt〉 = exp(−iHt/~)|ψ0〉. (126)

In general, if the state vector is know at time t = t0, instead of time t = 0, the result

Eq.(126) takes the form

|ψt〉 = exp(−iH(t− t0)/~)
∑

n

cn(t0)|En〉 (127)

= exp(−iH(t− t0)/~)|ψt0〉. (128)

The time evolution operator U(t, t0), of Eq.(114), is therefore given by

U(t, t0) = exp(−iH(t− t0)/~) . (129)

§7.4 Stationary states and constants of motion

Stationary states

Let us consider time evolution of a system if it has a definite value of energy at an initial

time t0. The value of the energy then has to be one of the eigenvalues and the state vector

will be the corresponding eigenvector. So |ψt0〉 = |Em〉, then at time t the system will be

in the state given by

|ψt〉 = U(t, t0)|Em〉 = exp(−iEm(t− t0)/~)|Em〉. (130)

It must be noted that the state vector at different times is equal to the initial state vector

times a numerical phase factor (exp(−iEm(t − t0)/~)). Therefore, the vector at time t

represents the same state at all times. Such states are called stationary states because
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the state does not change with time. Every eigenvector of energy is a possible stationary

state of a system. In such a state the average value of a dynamical variable, X̂ , not having

time explicitly, is independent of time even if X̂ does not commute with Hamiltonian. In

fact the probabilities of finding a value on a measurement of the dynamical variable are

independent of time.

Constant of motion

Unless mentioned otherwise, we shall always assume that the Hamiltonian H of the system

under discussion is independent of time.

If the dynamical variable F does not contain explicit time dependence, then we have
∂F
∂t = 0. If such an operator F̂ commutes with the Hamiltonian operator Ĥ, we will have

[F̂ , Ĥ ] = 0 . (131)

Eq.(111) shows that
d

dt
〈ψt|F̂ |ψt〉 = 0

Therefore in an arbitrary state, the average value of F̂ does not change with time. Such

a dynamical variable will be called a constant of motion.

§7.5 Summary

• Given the state of the system at a time t0, the state vector at any other time is

related to it by a unitary transformation U(t, t0).

|ψt〉 = U(t, t0) |ψt0〉

• The equation of motion of quantum system is the Schrodinger equation

i~
d

dt
|ψt〉 = Ĥ|ψt〉

where Ĥ is the Hamltonian operator of the system.

• The time evolution operator satisfies the equation

i~
∂

∂t
U(t, t0)|ψt0〉 = Ĥ(t)U(t, t0)

• If the Hamiltonian does not depend on time, the evolution operator is

U(t, t0) = exp[−iĤ(t− t0)/~]

• The average value of a dynamical variable,F̂ , satisfies

d

dt
〈F̂ 〉 = 〈

∂F̂

∂t
〉+

1

i~
〈 [F̂ , Ĥ ] 〉
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• A dynamical variable is a constant of motion if it commutes with the Hamiltonian.

• The energy eigenstates of a system are staionary; they do not change with time.

The state vector of a stationary state at any time is equal to the initial state vector

multiplied by a numerical phase factor.

• The average value of a constant of motion G is independent of time in every possible

state of the system including nonstationary states.

• The avearge value of every dynamical variable is independent of time in stationary

states.

§7.6 Time Evolution of Quantum Systems

The state vector at a given time specifies the state of the system at a given time and the

state at any time is obtained by solving the Schrödinger equation.

i~
d|ψ〉

dt
= H|ψt〉. (132)

where H is the Hamiltonian operator. The reason for identification of H, in the above

equation, with Hamiltonian is best brought out in by means of correspondence with equa-

tions in classical mechanics.

From now on we will assume that the Hamiltonian H does not depend on time. In

this case the state vector at time t is related to the state vector at initial time t0 by

|ψt〉 = U(t, t0)|ψt0〉 (133)

where

U(t, t0) = exp
(
−
iH(t− t0)

~

)
(134)

Since H is a hermitian operator, it follows that U(t, t0) is a unitary operator.

The Hamiltonian operator being Hermitian leads to the following important conse-

quences. In the table below a few examples of time evolution of states are given.



Table : Time evolution energy eigenstates of a quantum
system

S.N. State at time t = 0 State at time t

1. |En〉 e−iEnt/~|En〉

2. c1|E1〉+ c2|E2〉 c1e
−iE1/~|E1〉+ c2e

−iE2t/~|En〉

3.
∑

k ck|Ek〉
∑

k cke
−iEkt/~|Ek〉

4. If states |ψt0〉, |φt0〉 evolve into |ψt〉, |φt〉,
then c1|ψt0〉+ c2|φt0〉 evolves into c1|ψt〉 + c2|φt〉

• The first row in the table shows that the energy eigenstates

H|En〉 = En|En〉 (135)

i.e. the states corresponding to a definite value of energy, have a very simple time

evolution. The state vector changes by phase factor, a multiplicative constant of

absolute value 1. Thus the state itself does not change with time. Therefore energy

states are called stationary states.

• The time evolution preserves the superposition of states as is brought out by the

examples in the second and last rows of the table.

• The time evolution is unitary and hence norm of the state vector is preserved. Math-

ematically this means that the norm 〈ψt|ψt〉 is independent of time. In other words

〈ψt|φt〉 = 〈ψt0|φt0〉 (136)

and
d‖ψ(t)‖2

dt
= 0 (137)

Remembering that ‖ψ(t)‖2 is just the sum of probabilities of all possible outcomes,

The above result has a physical interpretation that the total probability of all possible

outcomes of a measurement remains constant (= 1) at all times.

Here the results given above are a consequence of Hamiltonian being hermitian.

In an alternate approach [?], one can start from requirements that superposition be

preserved and the normalization of the state vector should not change with time and

prove that this leads to an equation of the form (132) where H some hermitian operator.

34



Identification with operator corresponding to Hamiltonian can then be done by making

use of classical correspondence.
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