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§1 Angular Momentum in Coordinate Representation

The orbital angular momentum of a particle is given by ~L = ~r× ~p and the components of

the angular momentum operator in coordinate representation are

L̂x = −i~ŷ ∂
∂z

− ẑ
∂

∂y
(1)

L̂y = −i~ẑ ∂
∂x

− x̂
∂

∂z
(2)

L̂z = −i~x̂ ∂
∂y

− ŷ
∂

∂x
(3)

Here Â means operator corresponding to the dynamical variable A. In terms of spher-

ical polar coordinates these expressions take the form
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L̂x = i~

(

sinφ
∂

∂θ
+ cot θ cosφ

∂

∂φ

)

(4)

L̂x = i~

(

sinφ
∂

∂θ
+ cot θ cosφ

∂

∂φ

)

(5)

L̂z = i~
∂

∂φ
(6)

The operator ~L2 given by
~L2 = L̂2

x + L̂2
y + L̂2

z (7)

takes the form

~L2 = −~
2

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

(8)

The components of orbital angular momentum satisfy the same commutation relations as

angular momentum.

[Lx, Ly] = i~Lz; [Ly, Lz] = i~Lx; [Lz, Lx] = i~Ly;

§1.1 Eigenvalues and Eigenvectors

These commutation relations of angular momentum imply that ~L2 commutes with ~n · L̂
for all numericaln̂. Hence we can find simultaneous eigenfunctions of ~L2 and a component

of ~L. along any direction ~n. Taking n̂ to be along z− axis the eigenvalue equations

~L2Y (θ, φ) = λ~2Y (θ, φ) (9)

LzY (θ, φ) = µ~Y (θ, φ) (10)

become differential equations
[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

Y (θ, φ) + λY (θ, φ) = 0 (11)

and

− i
∂

∂φ
Y (θ, φ) = µY (θ, φ) (12)

We shall now show that acceptable solutions exist only for

λ = ℓ(ℓ+ 1); µ = m (13)

where ℓ can take only positive integral values 0, 1, 2, · · · and m must satisfy

m = ℓ, ℓ− 1, · · · ,−ℓ+ 1,−ℓ, (−ℓ ≤ m ≤ ℓ) (14)

There are (2ℓ + 1) eigenvalues of Lz for a fixed ~L2 and the spherical harmonics Yℓmθ, φ

will be seen to be the corresponding eigenfunctions. These results on eigenvalues and

eigenfunctions of ~L2 and Lz will be proved by solving the differential equations by the

method of separation of variables.
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§1.2 Separation of Variables

To solve the differential equations we substitute

Y (θ, φ) = Q(θ)E(φ) (15)

in Eq.(11) and (12) and divide by Y (θ, φ) = Q(θ)E(φ). This gives

− i
dE(φ)

dφ
= µE(φ) (16)

Similarly, (11) gives

[

1

Q(θ)

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ
Q(θ)

)

+
1

sin2 θ

1

E(φ)

∂2E(φ)

∂φ2

]

+ λ = 0 (17)

On using Eq.(16) in (17) we get

sin2 θ

{

1

Q(θ)

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ
Q(θ)

)}

+ λ sin2 θ = − 1

E(φ)

d2E(φ)

dφ2
(18)

While the left hand side of the above equation is a function of θ, the right hand side

is a function of φ alone. Hence each side must be a constant, from Eq.(16) this constant

is µ. Thus we get

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ
Q(θ)

)

+
(

λ− µ2

sin2 θ

)

Q(θ) = 0 (19)

§1.3 Solution of φ equation

General solution of Eq.(16) is

E(φ) =

{

A exp(i
√
µφ) +B exp(−i√µφ), if µ 6= 0

C +Dφ, if µ = 0
(20)

A wave function must be single valued function. For a fixed r, θ, φ the values of φ and

φ+ 2π correspond to the same point. Hence the solution should have the same value for

φ and φ+ 2π. Thus we demand that E(φ) must satisfy

E(φ+ 2π) = E(φ) (21)

for all φ. For µ = 0 this implies that D = 0.

Next, when µ 6= 0 we must have

A exp(i
√
µφ+ 2π) +B exp(−i√µ(φ+ 2π)) = A exp(i

√
µφ) +B exp(−i√µφ) (22)

or

A exp(i
√
µφ) exp(2π) +B exp(−i√µφ) exp(2π)) = A exp(i

√
µφ) +B exp(−i√µφ). (23)
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For µ 6= 0, the linear independence of the exp(±i√µφ) implies that the corresponding

coefficients must be equal separately giving where m is an integer and the solutions of

Eq.(16) are

E(φ) = exp(imφ), m = 0,±1,±2, · · · (24)

§1.4 Solution of θ equation

If we substitute w = cos θ in Eq.(19) takes the form

d

dw
(1−w2)

dP (w)

dw
+

(

λ− m2

1− w2

)

P (w) = 0 (25)

where we have introduced P (w) ≡ Q(cos θ) and have used

dP (w)

dθ
=
dP (w)

dw
· dw
dθ

= − sin θ
dP (w)

dw

The equation (25) is known as associated Legendre equation. This equation can be solved

by the method of series solution. Since (25) is a second order differential equation, there

are two linearly independent solutions of this equation. For general values of λ both

the solutions become infinite at w = ±1 corresponding to θ = 0, π These solutions are

therefore unacceptable. For special values λ = ℓ(ℓ+ 1), where ℓ is a positive integer, and

with |m| ≤ ℓ, one solution remains finite , but not the other solution. Thus we fix

λ = ℓ(ℓ+ 1) |m| ≤ ℓ (26)

For the above choice, the non singular solution for P (w) is known as the associated Leg-

endre function and has the form

P ℓ
m(w) = (1− w2)|m|/2 d|m|

dw|m|
Pℓ(w) (27)

where Pℓ(w) is Legendre polynomial of degree ℓ.Thus the eigenfunctions of ~L2 and Lz are

the

Yℓm(θ, φ) = NP ℓ
m(cos θ)eimφ, m = ℓ, ℓ− 1, · · · , ℓ (28)

The normalization is fixed by demanding
∫ 2π

0
dφ

∫ π

0
Y ∗
ℓm(θ, φ)Yℓm(θ, φ)dθ = 1 (29)

The functions Yℓm(θ, φ) in Eq.(28) are known as spherical harmonics.

§2 Spherically Symmetric Potentials

§2.1 Solution of radial equation for a constant potential

Some Spherical Bessel functions

We shall now tabulate first few spherical Bessel functions.
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j0(ρ) =
sin ρ

ρ
(30)

j1(ρ) =
sin ρ

ρ2
− cos ρ

ρ
(31)

j2(ρ) =

(

3

ρ3
− 1

ρ

)

sin ρ− 3

ρ2
cos ρ (32)

n0(ρ) = −cos ρ

ρ
(33)

n1ρ = −cos ρ

ρ2
− sin ρ

ρ
(34)

n2ρ = −
(

3

ρ3
− 1

ρ

)

cos ρ− 3

ρ
sin ρ (35)
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h
(1)
0 (iρ) = −1

ρ
exp(−ρ) (36)

h
(1)
1 (iρ) = i

(

1

ρ
+

1

ρ2

)

(37)

h
(2)
2 (iρ) =

(

1

ρ
+

3

ρ
+

3

ρ3

)

exp(−ρ) (38)

The functions h
(2)
ℓ (ρ) have exp(ρ) as a factor which is bad for large ρ; only h(1)(iρ) is

useful when one needs a solution valid for large ρ. When one needs a solution valid for

intermediate values of ρ, one can take linear combination of jℓ(ρ) and nℓ(ρ).

Piecewise constant potentials

The solutions of the radial equation for a constant potential are known in terms of Bessel

functions. We shall list these solutions and discuss their properties before taking specific

examples such as free particle, square well potential. Let us assume V (r) = V0for some

range of values of r. Then for this range of values the radial equation takes the form

∂

∂r

(

r2
∂R

∂r

)

+
2m

~2

(

E − V0)−
ℓ(ℓ+ 1)

r2

)

R(r) = 0 (39)

We shall consider the cases E − V0 > 0 and E − V0 < 0 separately.

CASE I: E − V0 > 0

We define
2m(E − V0)

~2
= k2 and the two linearly independent solutions of the radial

equation are given by jℓ(kr) and nℓ(kr) known as spherical Bessel functions.Angular Mo-

mentum in coordinate representation; Separation of variables in polar coordinates; Solu-

tion of radial equation for a constant potential; Free particle solution in polar coordinates

;Square well and hard sphere; General properties of solutions; Isotropic oscillator in three

dimension; Hydrogen atom energy levels in Schrödinger mechanics; Accidental degeneracy;

Energy levels of positronium and alkali Atoms These are related to the Bessel functions

J−ν(kr) as follows

jℓ(kr) =
( π

2kr

)1/2
Jℓ+ 1

2

(kr) (40)

nℓ(kr) =
( π

2kr

)1/2
(−1)ℓ+1J−ℓ− 1

2

(kr) (41)

and the most general solution of the radial equation is a linear combination of the

above solutions.

R(r) = Ajℓ(kr) +Bnℓ(kr) (42)
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We need to know the behaviour of the solutions for r ≈ 0 and for r → ∞.

Small r : The solution jℓ(kr) goes to zero but nℓ(kr) is singular for r ≈ 0.In fact as

ρ→ 0, we have

jℓ(ρ) → ρℓ

(2ℓ+ 1)!!
(43)

nℓ(ρ) → (2ℓ− 1)!!ρ−ℓ−1 (44)

Large r : For large ρ both jℓ and nℓ are oscillatory. As ρ→ ∞

jℓ(ρ) → 1

ρ
cos(ρ− (ℓ+ 1)π/2) (45)

nℓ(ρ) → 1

ρ
sin(ρ− (ℓ+ 1)π/2) (46)

Thus for E > V0 both jℓ(ρ) and nℓ(ρ) are acceptable solutions as ρ→ ∞

CASE II : E − V0 < 0

In this case we define

2m(E − V0)

~2
= −α2, α = real (47)

In this case two linearly indepndent solutions are jℓ(iαr) and nℓ(iαr) and the most

general solution is

R(r) = Ajℓ(iαr) +Bnℓ(iαr) (48)

Again nℓ(iαr) has unacceptable singular behaviour at r = 0. To discuss large r be-

haviour, introduce Hankel functions of first and second kinds by

h
(1)
ℓ (ρ) = jℓρ+ inℓ(ρ) (49)

h
(2)
ℓ (ρ) = jℓρ− inℓ(ρ) (50)

Then, as ρ→ ∞, we have

h
(1)
ℓ (ρ) → −1

ρ
exp(−ρ) (51)

and h
(2)
e ll(ρ) blows up and becomes infinite as ρ→ ∞. and is unacceptable. It may be

remarked that the solutions jℓ(ρ) and nℓ(ρ) are linear combinations of cos ρ, sin ρmultiplied

by powers of ρ. Similarly, h
(1,2)
ℓ (ρ) are exponentials multiplied by terms containing powers

of ρ.
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Table: Forms of acceptable solutions of radial equation

Near r = 0 For large r r in (a, b)

E − V0 > 0 jℓ(kr) Ajℓ(kr) +Bnℓ(kr) Ajℓ(kr) +Bnℓ(kr)

E − V0 < 0 jℓ(ikr) jℓ(ikr) + inℓ(ikr) Ajℓ(ikr) +Bnℓ(ikr)

≡ h
(1)
ℓ (ikr) ≡ h

(1)
ℓ (ikr)

§2.2 Free particle solution in polar coordinates

Prerequisites Free Particle Solution [?]

The radial equation for a free particle, V (r) = 0, for all r is

1

r2
∂

∂r

(

r2
∂R

∂r

)

+

(

k2 − ℓ(ℓ+ 1)

r2

)

R = 0, (52)

where k2 =
2mE

~2
. The solution of the radial equation has the most general form

R(r) = Ajℓ(kr) +Bnℓ(kr) (53)

but we must set B = 0 because nℓ(kr) → ∞ as r → 0. Hence we get

Rℓ(r) = Ajℓ(kr) (54)

and the full free particle wave function is

Ψ(r, θ, φ) = Njℓ(kr)Yℓm(θ, φ) (55)

For a given value of energy E, ℓ can take all values 0, 1, 2, . . . . and m has 2(ℓ + 1)

values from −ℓ to ℓ. Therefore, for every energy value E > 0 there are infinte number

of solutions. If we take linear combinations of solutions with fixed energy E we get most

general form of the solution for a given energy as

Φ(~r) =
∑

Cℓmjℓ(kr)Yℓm(θ, φ) (56)

In cartesian coordinates the free particle solutions for energy E are plane waves

exp(i~k · ~r)

Thus it is possible to write each of these two type of solutions as a linear combination of

the other type. In particular we have

exp(~k · ~r) =
∑

Cℓmjℓ(kr)Yℓm(θ, φ) (57)
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In a particular case of this equation, when k is along the z axis and ~k ·~r = kz, we have

the expansion of plane waves

exp(ikz) =

∞
∑

0

(2ℓ+ 1)iℓjℓ(kr)Pℓ(cos θ) (58)

Note that only m = 0 terms contribute in the above equation.

§2.3 Hard sphere

The potential for a rigid spherical box can be written as

V (r) =

{

0, 0 < r < a

∞, r > a
. (59)

The problem is separable in spherical polar coordinates and form of the full wave

function is

ψ(r, θ, φ) = R(r)Yℓm(θ, φ). (60)

We need to consider solutions of the radial equation only. No solution can be found

for E < 0, therefore we consider E > 0. For 0r > a the potential is infinite and hence the

radial wave function must be zero, Next we consider r < a, where the potential is zero.

The radial equation assumes the form

− 1

r2
d

dr
r2
dR(r)

dr
+
ℓ(ℓ+ 1)~2

2mr2
R(r)− ER(r) = 0. (61)

The most general solution of this equation is given in terms of spherical Bessel functions

jℓ, nℓ and we write it as

REℓ(r) = Ajℓ(kr) +Bnℓ(kr), k2 =
2mE

~2
. (62)

Recall that near r = 0, nℓ(r) ∼ r−ℓ−1 and blows up as r → 0. Therefore we must set

B = 0 if the solution is to remain finite at r = 0. Thus we get

Rℓ(r) =

{

Ajℓ(kr), 0 < r < a

0 r > a
. (63)

Next we must demand that the radial wave function R(r) must be continuous at r = 0

Remember that there is no corresponding requirement on the derivative for this case of

infinite jump in the potential at r = a The continuity requirement of REℓ(r) becomes

jℓ(ka) = 0. (64)

The solutions of the above equation determine allowed values of k and hence allowed

bound state energies.
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Energy levels and degeneracy

To get all the solutions, one proceeds as follows. First set ℓ = 0 and locate the roots of

j0(ka) = 0. We call the roots as ρ0n, n = 0, 1, 2, . . . and the corresponding energies are

given by E =
~
2ρ20n
2ma2 .. Here n denotes the number of nodes of the radial wave function for

ℓ = 0. Next, we set ℓ = 1 and find the roots of j1(kr) = 0, calling these roots as ρ1n, n =

0, 1, 2, . . . the ℓ = 1 energy levels are given by E =
~
2ρ21n
2ma2

. This process is to be repeated

for all values of angular momentum ℓ and the number of bound states for each ℓ turns out

to be infinite. The states of definite energy depend on quantum numbers nℓm and the

energy does not depend on magnetic quantum number m. Therefore for a given azimuthal

quantum number ℓ we have (2ℓ+1) wave functions NnℓRnℓ(r/ρnℓ)Yℓm(θ, φ), (m = −ℓ,−ℓ+
1, · · · , ℓ) and the energy levels Enℓ are (2ℓ+1) fold degenerate. The energy increases with ℓ

and also with increasing n. Thus schematic energy level diagram would appear as follows.
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—————

—————

—————

n′ = 3
n′ = 3

n′ = 3 —————

n′ = 2
n′ = 2

n′ = 2 —————

n′ = 1
n′ = 1

n′ = 1 —————

n′ = 0
n′ = 0

n′ = 0 —————

l = 0 l = 1 l = 2
nondegenerate m = −1, 0, 1 m = −2,−1, 0, 1, 2

3 fold degenerate 5 fold degenerate

11



§2.4 Spherically symmetric square Well

The potential for a spherical well can be written as

V (r) =

{

−V0, 0 < r < a, V0 > 0,

0, r > a
. (65)

The problem is separable in spherical polar coordinates and form of the full wave

function is

ψ(r, θ, φ) = R(r)Yℓm(θ, φ). (66)

We need to consider solutions of the radial equation only. No solution can be found

for E < −V0, therefore we consider E > −V0. We shall consider two cases of

(a) −V0 < E < 0. This case corresponds to bound states,

(b) E > 0. In this case the there is no bound state. This case is of interest for scattering

from the potential.

Bound states

The bound states correspond to −V0 < E < 0. The radial equation in regions r < a and

r > a assumes the forms

1

r2
d

dr
r2
dR(r)

dr
+

(

q2 − ℓ(ℓ+ 1)

r2

)

R(r) = 0, r > 0, (67)

1

r2
d

dr
r2
dR(r)

dr
+

(

− α2 +
ℓ(ℓ+ 1)

r2

)

R(r) = 0, r > 0. (68)

where

q2 =
2m(E + V0)

~2
, α2 =

2m|E|
~2

. (69)

The most general solution of this equation is given in terms of spherical Bessel functions

jℓ, nℓ and is given by

R(r) =

{

Ajℓ(qr) +Bnℓ(qr), r < a

Ch(1)(αr) +Dh(2)(αr) r > a
. (70)

Recall that near r = 0, nℓ(r) ∼ r−ℓ−1 and blows up as r → 0. Therefore we must set

B = 0 if the solution is to remain finite at r = 0. Also as r → ∞ the Hankel function

h(2)(αr) increases exponentially, hence we must set D =. Thus we get

Rℓ(r) =

{

Ajℓ(qr), 0 < r < a

Ch
(1)
ℓ (αr) r > a

. (71)
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Next we must demand that the radial wave function R(r) and its derivative must be

continuous at r = 0. These continuity requirements become give the following restrictions

of the coefficients A,C.

Ajℓ(qa) = Ch
(1)
ℓ (αa). (72)

A
djℓ(qr)

dr

∣

∣

∣

r=a
= C

dh
(1)
ℓ (αr)

dr

∣

∣

∣

r=a
. (73)

Noting that A,C cannot be zero and eliminating A and C we get condition on the

bound state energy to be

1

jℓ(qr)

djℓ(qr)

dr

∣

∣

∣

r=a
=

1

hℓ(qr)

dh
(1)
ℓ (αr)

dr

∣

∣

∣

r=a
.. (74)

The above equation can be solved numerically to obtain allowed values energies. In

this case of square well only a finite number of states exist for a given ℓ below a maximum

value. In general there will be no bound state for ℓ greater that a certain values. The

states of definite energy depend on quantum number nℓ and the energy does not depend

on magnetic quantum number m. Therefore for a given azimuthal quantum number ℓ we

have (2ℓ + 1) wave functions NnℓRnℓ(ρ)Yℓm(θ, φ) and the energy levels Enℓ are (2ℓ + 1)

fold degenerate. The energy increases with ℓ and also with increasing n. Thus energy level

diagram would appear as follows.

Continuous energy solutions

The energy levels for E > 0 are continuous. We shall write the corresponding solutions

which are important for discussion of scattering from a square well. When E > 0 we define

q2 =
2m(E + V0)

~2
, k2 =

2mE

~2
. (75)

A most general form of the solution of the radial equation is given by

Rℓ(r) =

{

Ajℓ(qr) +Bnℓ(qr), r < a

Cjℓ(kr) +Bnℓ(kr), r < a
. (76)

In order that the radial wave function be finite at r = 0, we must set B = 0. This

gives

Rℓ(r) =

{

Ajℓ(qr), r < a

Cjℓ(kr) +Bnℓ(kr), r < a
. (77)

Next we demand continuity of the radial wave function and its derivative at r = a and

get

13



Ajℓ(qa) = Cjℓ(ka) +Bnℓ(ka) (78)

A
d

dr
jℓ(qr)

∣

∣

∣

r=a
= C

d

dr
jℓ(kr)

∣

∣

∣

r=a
+B

d

dr
nℓ(kr)

∣

∣

∣

r=a
(79)

These two equations constrain the three constants A,B,C and determine their ratios,

the overall normalization constant remains, as expected, undetermined. For a given energy

E there is solution for each ℓ = 0, 1, 2, ... andm = −ℓ, ..., ℓ giving rise to infinite degeneracy

for E > 0. These continuous energy solutions will be required for physical applications to

scattering problems.

§3 Hydrogen Atom

§4 Hydrogen Atom

The classical Hamiltonian for an electron and a nucleus of charge Ze is

H =
p21
2m1

+
p22
2m2

− Ze2

|~r1 − ~r2|
(80)

where m1,m2 are the masses of the electron and the nucleus and ~r1, ~r2 denote their

respective positions.The case Z = 1 corresponds to H atom, Z = 2 singly ionized He atom

and Z = 3 doubly ionized Li atom and so on.

The Schrödinger equation for the electron nucleus system takes the form

− ~
2

2m1

( ∂2

∂x21
+

∂2

∂y21
+

∂2

∂z21

)

Ψ− ~
2

2m1

( ∂2

∂x22
+

∂2

∂y22
+

∂2

∂z22

)

Ψ− Ze2

|~r1 − ~r2|
Ψ = EΨ. (81)

Since the potential depends on relative position only, the two body problem can be

reduced to an equivalent one body problem with reduced mass by changing the frame

of reference to the centre of mass frame. Introducing the centre of mass and relative

coordinates defined by

~R =
m1~r1 +m2~r2
m1 +m2

, ~r = ~r1 − ~r2. (82)

The centre of mass will move like a free particle, and the relative motion reduces to

that of a particle of reduced mass µ = m1m2

m1+m2
Therefore it is not surprising that the

separation of variables in the Schrödinger equation can be achieved by changing to these

new variables ~r and ~R. In terms of these variables the Schrödinger equation takes the

form
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− ~
2

2M

( ∂2

∂X2
+

∂2

∂Y 2
+

∂2

∂Z2

)

Ψ(~R,~r) (83)

− ~
2

2µ

( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

Ψ(~R,~r)− Ze2

r
Ψ(~R,~r) = EΨ(~R,~r). (84)

Here M = m1 +m2 is the total mass, µ is the reduced mass. If we now write the full

wave function Ψ(~R,~r) as

Ψ(~r,~r) = U(~R)u(~r) (85)

and substitute it in Eq.(84), the variables ~R and ~r get separated and we would get the

following differential equations for U(~R) and u(~r)

− ~
2

2M

( ∂2

∂X2
+

∂2

∂Y 2
+

∂2

∂Z2

)

U(~R) = EcmU(~R) (86)

− ~
2

2µ

( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

u(~r)− Ze2

r
u(~r) = Eu(~r). (87)

Ecm, E are constants appearing from the process of separation of variables so that

E + Ecm = E . The equation (86) is a free particle equation for the centre of mass and

Eq.(87) describes the relative motion of the electron and the nucleus.

The Schrödinger equation (87) can now be solved by separation of variables in spherical

polar coordinates r, θ, φ. The angular part of the wave function is given by the spherical

harmonics Yℓ2m(θ, φ) and therefore we write

u(~r) = R(r)Yℓm(θ, φ). (88)

The radial equation for R(r) takes the form

1

r2
d

dr

(

r2
dR

dr

)

+
2µE

~2

(

E +
Ze2

r
− ℓ(ℓ+ 1)

~2

)

R(r) = 0, (89)

d2R(r)

dr2
+

2

r

dR(r)

dr
+

2µE

~2

(

E +
Ze2

r
− ℓ(ℓ+ 1)

~2

)

R(r) = 0. (90)

The radial equation involves effective potential

Veff(r) = −Ze
2

r
+
ℓ(ℓ+ 1)~2

2µr2
. (91)

Remembering that ℓ(ℓ+1)~2 is the eigenvalue of the square of orbital angular momen-

tum, L2,the second term is seen to be the centrifugal barrier term that appears in classical

mechanics. The effective potentail goes to zero fr large r. Hence for E > 0 the energy
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eigenvalues will be continuous and the bound states exist only for negative E, so we write

E = −|E|. It is convenient to work with dimensionless variables ρ and λ defined by

ρ = αr, α2 =
8µ|E|
~2

(92)

λ =
2µZe2

α~2
=

Ze2

~

√

µ

2|E| . (93)

The equation for radial wave function written in terms of ρ takes the form

d2R

dρ2
+

2

ρ

dR

dρ
+

(λ

ρ
− 1

4
− ℓ(ℓ+ 1)

ρ2

)

R = 0. (94)

The above equation (94) can be transformed into a form similar to one dimensional

Schrödinger equation by introducing χ(ρ) = ρR(ρ) which gives the following equation for

χ(ρ)

d2χ

dρ2
+

(λ

ρ
− 1

4
− ℓ(ℓ+ 1)

ρ2

)

χ(ρ) = 0. (95)

§4.1 Large ρ behaviour

The behaviour of the radial wave function for large ρ can be easily found by taking large

ρ limit of Eq.(95). Neglecting the terms λ
ρ and ℓ(ℓ+1)

ρ2 compared to 1/4 we get

d2χ(ρ)

dρ2
− 1

4
χρ = 0. (96)

showing that the wave function behaves like exp(±ρ/2) for large ρ. The wave function

must be bounded everywhere including at infinity, so we must have χ(ρ) ≈ e−ρ/2. This

suggests that we write R = e−ρ/2F (ρ), and solve for F (ρ). The equation for F (ρ) turns

out to be

d2F (ρ)

dρ2
+

(

2

ρ
− 1

)

+

[

λ− 1

ρ
− ℓ(ℓ+ 1

ρ2

]

(97)

§4.2 Solution by Frobenius method

We now find solution of the differential equation for F (ρ) by the method of series solution.

Assuming the form

F (ρ) =
∑

m=0

amρ
c+m, , (98)

substituting in Eq.(97), and equating coefficients of lowest power of ρ to zero we get

c(c + 1)− ℓ(ℓ+ 1) = 0 =⇒ c = −ℓ− 1, ℓ (99)
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Since ℓ > 0, the value c = −ℓ(ℓ+ 1) give solution diverging at ρ = 0.

Therefore we choose c = ℓ = and the recurrence relation for the coefficients am turns

out to be

am+1 =
(m+ ℓ+ 1− λ

(m+ 1)(m + 2ℓ+ 2)
am. (100)

The ratio of coefficients for large m

am+1

am
∼ 1

m
(101)

coincides with the corresponding value for the series ρk exp(ρ). Hence if the series does

not terminate, the solution F (ρ) gives the radial wave function diverging like ρk exp(ρ/2)

for large ρ. This is unacceptable and hence the series must terminate. This happens if all

terms vanish after some n′ i.e. am = 0 for all m > n′. For this to happen we must have

an′+1 = 0. Hence from Eq.(100) we get

λ = n′ + ℓ+ 1. (102)

The energy is then given by

En = −|En| = −Z
2e4µ

2~2n2
=
Zα2

2n2
(µc2) . (103)

where c is velocity of light and α = e2

~c ≈ 1
137 is the fine structure constant.

§4.3 Properties of H atom wave functions

The final expressions for wave functions for hydrogen like problems is given by

unℓm(r, θ, φ) = Rnℓ(r)Yℓm(θ, φ) (104)

Rnℓ(r) = Nnℓ ρ
ℓ L2ℓ+1

n+ℓ (ρ)e
−ρ/2 (105)

Nnℓ =

√

(

2Z

na0

)3 (n− ℓ− 1)!

2n
(

(n + ℓ)!
) (106)

with

ρ =
( 2Z

na0

)

r, a0 =
~
2

µe2
. (107)

and n is the principle quantum number.

Here Lp
q(ρ) are associated Laguerre polynomials and a0 is the radius of first Bohr orbit

of the the electron in hydrogen atom. The energy levels are given by
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En = −Z
2e4µ

2~2n2
. (108)

The first few radial wave functions are

R10 = (Z/2a0)
3

22 exp(−Zr/2a0)) (109)

R20(r) = (Z/2a0)
3

2 (2− Zr/a0) exp(−Zr/2a0)) (110)

R20(r) = (Z/2a0)
3

2 (Zr/
√
3 a0) exp(−Zr/2a0)) (111)

A comment on hydrogen atom energy levels Finally we wish to remind you that

the non-relativistic result −R/n2 for the energy levels of H-atom is not the end of story

for H-atom levels. Precision experiments show that each level is not a single level. To

understand the experimental facts we must take into account of relativistic effects using

Dirac theory of electron

Dirac Theory ր Spin orbit coupling ց Fine Structure
ց Relativistic variation of mass ր

Also a hyperfine structure, seen in the energy levels, requires a treatment of the spin-

spin interaction of electron with the nucleus and an explanation of a tiny ‘Lamb shift’

requires use of quantum field theory.

Hyperfine structure → Effect of Nuclear Spin
Lamb shift → Quantum field Theory, Vacuum Polarization Effect

§5 Accidental degeneracy

General Properties of Bound State Spectra

A potential is spherically symmetric if in polar variables it depends only on r and not on

θ and φ coordinates . We shall now discuss general properties of solution of 3-dimensional

Schrödinger equation Hψ = Eψ where

H =
~p 2

2m
+ V (r)

and the potential V (r) is spherically symmetric.

Conserved quantities

We note that all the three components of ~L commute with Hamiltonian

[~L,H] = 0

18



hence

[~L2,H] = 0 .

The parity operator P

Pψ(~r) = ψ(−~r)

also commutes with L2Lz and H, operators. Therefore, the eigen functions of H will also

be eigen functions of L2, Lz and parity and each level can be assigned a definite value of

l,m and parity. For a state with definite value of l, the value of parity is ≡ (−1)l. In this

case L2, Lz and H form a complete commuting set.

(2ℓ+ 1) degeneracy

We use the notation |El,m〉 to denote the simultaneous eigenvector of H,L2 and Lz

H|E, lm〉 = E|E, lm〉 (112)

L2|E, lm〉 = l(l + 1)~2|E, lm〉 (113)

and Lz|E, lm〉 = m~|E, lm〉 (114)

P |E, lm〉 = (−1)l|E, lm〉 (115)

Applying L− on |El,m〉 several times leads successively to

|El,m− 1 >〉 , |E, l,m− 2〉 · · · |El,−l > (116)

(117)

and the action of L+ on |E, lm〉 leads to the states

|El,m+ 1〉 , |E, l,m+ 2〉 · · · |El, l > (118)

All these states will have the same value of energy. This statement can be proved

by making use of the fact that H commutes with L± and that action of L+ (or L−) on

|Elm > leads to states |El,m+ 1 > (or |El,m− 1 >). Thus we see that the bound state

energy eigenvalues of a spherically symmetric potential problem with have (2l + 1) fold

degeneracy. ( What about the continuous energy eigenvalues? )

Radial wave function

The Schrödinger equation for a spherically symmetric potential can be solved by separation

of variables in polar coordinates. The angular part of the wave functions turns out to be

a spherical harmonic Ylm(θ, φ) and the wave function has the form

ψ(r, θ, φ) = R(r)Ylm(θ, φ)

where R(r) is radial wave function satisfying the Schrödinger equation

− ~
2

2m

1

r2
d

dr
r2
d

dr
R(r) +

(

V (r) +
l(l + 1)~2

2mr2

)

R(r) = ER(r) .
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If we define χ(r) = rR(r), the function χ satisfies the equation

− ~
2

2m

d2χ

dr2
+

(

V (r) +
l(l + 1)~2

2mr2
− E

)

χ = 0 .

with boundary condition χ(r)|r=o = 0, otherwise R(r), the radial wave function will tend

to ∞ as r → ∞.

Bound state spectrum

The equation for χ has the form of one dimensional Schrödinger equation. Let n′ denote

the number of zeros of the radial wave function, excluding r = 0 and at r = ∞. Then for

a fixed value of l, the energy will increase with n′, n′ = 0, 1, 2, · · · will correspond to, for

a fixed l, the ‘ground’ state, first excited state, the second excited state etc. Because of

the l dependence of the term l(l+1)~2

2mr2
in the potential appearing in equation for χ(r), we

expect that as l is changed, keeping the number of nodes to be the same, E would also

change. Increasing l would lead to increase in E, when n′ is kept fixed.

Thus the spectrum would appear as follows

—————

—————

—————

n′ = 3
n′ = 3

n′ = 3 —————

n′ = 2
n′ = 2

n′ = 2 —————

n′ = 1
n′ = 1

n′ = 1 —————

n′ = 0
n′ = 0

n′ = 0 —————

l = 0 l = 1 l = 2
nondegenerate m = −1, 0, 1 m = −2,−1, 0, 1, 2

3 fold degenerate 5 fold degenerate

Coulomb problem spectrum

For hydrogen atom the energy levels are given by

E = − Z2e4m

2~2(n′ + l + 1)2

The energy does not depend on n′ and l separately but only on the combination n =

(n′+ l+1). For a fixed n, l can have values 0, 1, · · · , n− 1 ( because n′ ≥ 0 ) and all these
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solutions correspond to the same energy eigenvalue. The energy level diagram of H-atom,

therefore, appears as shown below.

l = 0 l = 1 l = 2 l = 3 l = 4
n = 7
n = 6
n = 5
n = 4 n = 4 n = 4 n = 4 n = 4 n = 4

7 fold 9 fold
degenerate degenerate

n = 3 n = 3 n = 3 n = 3
5 fold

degenerate
n = 2 n = 2 n = 2

3 fold
degenerate

n = 1 n = 1
non-degenerate

Putting all the levels which have the same energy together we get the following

schematic representation of energy levels of H atom. This table also shows that the

allowed values of l for each n, and number of m values for each level. The number of total

m values, with the same energy, is n2 and the degeneracy, after taking spin into account,

becomes 2n2.

l values number of m values degeneracy

0, 1, ..n− 1 n2 2n2

n = 4 32 l = 0, 1, 2, 3
∑

(2l + 1) = 16 2× 16 = 32
n = 3 18 l = 0, 1, 2

∑

2(l+ 1) = 9 2× 9 = 18
n = 2 8 l = 0, 1

∑

(2l+ 1) = 4 2× 4 = 8

n = 1 degen=2 l = 0
∑

(2l+ 1) = 1 2× 1 = 2

Accidental degeneracy

Comparing the hydrogen atom levels with those of a general spherically symmetric poten-

tial, we find that energies for states with several different values of l (= 0, 1, 2 . . . n − 1)

are the same. For a general spherically symmetric potential different combinations of

n, l values correspond to different bound state energies, and are (2l + 1) fold degenerate.

Thus there is an extra degeneracy is present for H atom beyond the expected (2l + 1)

fold degeneracy this phenomenon present in the case of hydrogen atom is known as acci-

dental degeneracy. Another well known case of accidental degeneracy is that of isotropic

harmonic oscillator ( V (r) = 1
2kr

2) in three dimensions.
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Remarks

[1] It must be emphasized that the accidental degeneracy is due to the special symmetry

of the Coulomb problem.

[2] Any slight deviation of the potential from 1
r will result in splitting of energy levels

with different values of l.

[3] It is known that the accidental degeneracy is present whenever the Schrödinger

equation Hψ = Eψ can be separated into ordinary differential equations in more

than one set of coordinate system.

H atom — Separation of variables for the Coulomb problem is possible in

(a) spherical polar coordinates r, θ, φ

(b) parabolic coordinates ξ, η, φ defined by

ξ = r − z = r(1− cos θ) η = r + z = r(1 + cos θ) φ = φ (119)

[4] The isotropic oscillator also exhibits accidental degeneracy. For isotropic harmonic

oscillator,V (r) = 1
2kr

2, the Schrodinger equation can be separated in two set of

variables, Cartesian and spherical polar coordinates.
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