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Lesson 1

Piece wise Continuous Potentials

§1 Particle in a box

The energy levels of a particle in one dimensional infinite well

V (x) =

{

0, 0 ≤ x ≤ L

∞ outside
(1.1)

can be found by solving the Schrödinger equation for 0 ≤ x ≤ L, where the particle is

like a free particle and the solution is given by

u(x) = A sin kx+B cos kx, k2 =
2mE

~2
. (1.2)

Out side the box, the potential is infinity and the solution vanishes:

u(x) = 0, if x < 0, or x > L. (1.3)

The boundary conditions to be imposed on the solution are

u(0) = u(L) = 0, (1.4)

and no restriction on the derivatives at the boundary points x = 0, x = L. This gives

u(0) = 0 ⇒ B = 0, (1.5)

u(L) = 0 ⇒ sin kL = 0. (1.6)

The solutions of this equation are kn = nπ/L, n = 1, 2, . . .. The energy levels are given

by

En =
~
2k2n
2m

,=
~
2n2π2

2mL2
(1.7)

and the corresponding wave functions are

2
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un(x) =

{

√

2
L sin

(

nπx
L

)

0 ≤ x ≤ L

0 x < 0 or x > L.
(1.8)

and n takes all positive integral values.It should be noted that for k = 0 the solution

vanishes identically and therefore n = 0 is unacceptable.

§2 Square well

We shall discuss the energy spectrum for a square well potential shown in figure below.

Within the range of the well, it is an attractive, and constant, potential. With suitable

reference for potential energy, the potential can be chosen to be 0 inside the well. It is

again a constant outside the range of the potential well. We have chosen V0 > 0 to denote

the value of the potential outside the well. We shall now obtain the solution for energy

levels of a square well potential in one dimension.

The square well potential is given by

✲

✻

Fig. 1

III I II

V0

V (x)

x

V (x) =

{

0 0 ≤ x ≤ L

V0 outside

Since the potential has different expressions for different values of x, the Schrödinger

equation is solved in the three regions (i) x < 0 (ii) 0 ≤ x ≤ L and (iii) x > L separately.

Also the two ranges of energy 0 < E < V0 and E > V0 will be considered separately.

Bound states

The bound states correspond to 0 < E < V0. For the bound states one must insist that

ψ(x) → 0 at large distances, because |ψ|2dx represents probability of particle being found

between x and x + dx. Thus in the limit x → ±∞, we must have limψ(x) → 0. The

solutions will be obtained in the three regions I,II, and III separately. Besides vanishing
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of the solution at infinity, we shall impose the requiremnet of continuity on the solution

for the eigenfunctions and their derivatives.

Region I: The Schrödinger equation is

− ~
2

2m

d2ψ

dx2
= Eψ

or
d2ψ

dx2
+ k2ψ = 0

where k2 = 2mE/~2 and most general solution is

ψI(x) = A sin kx+B cos kx

Region II: When x > L, V (x) = V0 and the Schrödinger equation takes the form

− ~
2

2m

d2ψ

dx2
+ (V0 −E)ψ = 0

or
d2ψ

dx2
+

2m

~2
(V0 − E)ψ = 0

Denoting 2m
~2

(V0 − E) = α2, where α is real the most general solution for x < 0 is

ψII = Ceαx +De−αx

Region III The solution for x < 0 , will have the same form as in the region II.

ψIII = Feαx +Ge−αx

Boundary conditions at infinity

For the bound states the wave function must vanish for large distances.

(i) We want that ψIII(x) should → 0 as x→ −∞.

∴ G = 0

(ii) Also ψII(x) should → 0 as x→ ∞

∴ C = 0

Continuity Conditions Next we require that the wave function and its derivative be

continuous at x = 0 and x = L.
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(i) Continuity conditions for the solution and its derivative at x = 0 give

ψIII(x)|x=0 = ψI(x)|x=0 (1.9)

ψ′
III(x)|x=0 = ψ′

I(x)|x=0 (1.10)

writing out these and using G = 0 gives

F = B (1.11)

αF = kA (1.12)

which implies

B = kA/α (1.13)

(ii) Continuity conditions for the derivative at x = L give

ψI(x)|x=L = ψII(x)|x=L (1.14)

ψ′
I(x)|x=L = ψ′

II(x)|x=L (1.15)

These equations imply

A sin kL+B cos kL = De−αL (1.16)

kA cos kL− kB sin kL = −Dαe−αL (1.17)

We use Eq.(13) to eliminate B in favour of A, next using Eq.(16) and ( (17) ) we get

two equations for A and D. These two equations can be written in form of a matrix

[

sin kL+ k
α cos kL −e−αL

k cos kL− k2

α sin kL αe−αL

] [

A
D

]

= 0

These equations have a non trivial solution only when the determinant of the matrix

on left hand side is zero. This requirement gives a condition on the allowed values of

energy and can be cast in the forms

α(sin kL+
k

α
cos kL) + (k cos kL− k2

α
sin kL) = 0 (1.18)

(k2 − α2) sin kL− 2kα cos kL = 0. (1.19)

i.e.

tan kL =
2kα

k2 − α2
≡ tan 2θ, (1.20)

where θ is defined by tan θ = α/k, it is now easy to see that bound state energy eigenvalue

must satisfy

k tan kL/2 = α, or k cot kL/2 = −α (1.21)

Energy E appears in the above quantization condition through k and α and can be deter-

mined graphically.
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§3 Dirac Delta Function Potential

§4 Harmonic oscillator

We shall now outline the steps for deriving energy levels and wave functions for harmonic

oscillator in the coordinate representation. The eigenvalue equation

Hψ = Eψ

for the harmonic oscillator becomes the following differential equation in coordinate rep-

resentation
(−~

2

2m

d2

dx2
+

1

2
mω2q2

)

ψ(q) = Eψ(q) (1.22)

The main steps in solution of the eigenvalue problem in coordinate representation are as

follows.

1. In terms of dimensionless variables ξ = αq, λ = 2E/~ω, where α2 = mω/~, the

Schrödinger equation (1) becomes

d2ψ

dξ2
+ (λ− ξ2)ψ = 0 .

2. It can be seen that for large ξ solutions to the differential equation behave as a

polynomial times e±ξ2/2.

3. Define H(ξ) by means of the equation

ψ(ξ) = H(ξ)e−ξ2/2

then H(ξ) satisfies equation.

H ′′ − 2ξH ′ + (λ− 1)H = 0 . (1.23)

4. The above equation is well known Hermite equation and can be solved by the method

of series solution. To solve the Hermite equation we write a series expansion

H(ξ) = ξc(ao + a1ξ + a2ξ
2 + · · · ) (1.24)

The series (3) is substituted in (1), and coefficient of each power of ξ coming from

the L.H.S. of (2) must be set equal to zero. This gives value of c

c(c− 1) = 0 ⇒ c = 0, 1

and recurrence relations for the coefficients an

an+2 =
2n+ 2c+ 1− λ

(n+ c+ 1)(n + c+ 2)
an . (1.25)
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5. For c = 0 all the even coefficients are determined in terms of ao and all the odd

coefficients are proportional to a1, and ao and a1 are arbitrary. Thus one gets

H(ξ) = a1y1(ξ) + a2y2(ξ) (1.26)

For c = 1 the solution for H(ξ) is proportional to y2(ξ) and is already contained in

(5). Hence this case, c = 1, need not be considered separately.

Note the eqn.(2) is a second order differential equation and the most general solution

is a linear combination of two independent solutions y1(ξ) and y2(ξ).

6. Next we must explore large ξ behaviour of (5). The relation (4) for large n takes the

form
an+2

an
∼ 2

n
.

which coincides with the ratio of the expansion coefficients, in the series for exp(ξ2)

exp(ξ2) =
∑ ξ2n

n!

Thus the two solutions y1(ξ) and y2(ξ) behave like exp(ξ2) for large ξ and

ψ(ξ) = H(ξ)eξ
2/2 (1.27)

ξ→∞ ∼ eξ
2 × e−ξ2/2 = eξ

2/2 (1.28)

This behaviour of ψ(ξ) for large ξ makes the solution unacceptable because ψ(ξ)

would not be square integrable.

7. The only way one can get a square integrable solution for ψ(q) is that the solution

H(ξ) must reduce to a polynomial. If H(ξ) is to contain a maximum power n then

we must demand the following conditions.

(i) an+2 = 0

⇒ 2n+ 2c+ 1− λ = 0

λ = 2n+ 1

and

(ii ) a1 = 0 if n = even

ao = 0 if n = odd.

8. The condition λ = (2n + 1) is equivalent to the energy quantization

E = (n+
1

2
)~ω .
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The wave functions are obtained by using conditions, as in (i) and (ii) above, and

the recurrence relations to solve for the coefficients an. The resulting solutions for

Hn are Hermite polynomials and the normalized eigenfunctions are given by

ψn(q) =

(

α√
π 2nn!

)1/2

Hn(αq) exp(−α2q2/2)

These coincide with the wave functions obtained from operator methods 1
n!(a

†)nφ0(q).



Lesson 2

Reflection and Transmission

§1 Defining Reflection and Transmission Coefficients

The reflection and transmission coefficients for a particle through a potential will be de-

fined in terms of large distance asymptotic properties of the solutions of the Schrödinger

equation. We shall, therefore, consider the motion of a particle in a one dimensional po-

tential V (x). We assume that the potential is such that it approaches a constant value V1

as x→ −∞ and a constant value V2 as x→ +∞.

lim
x→−∞

= V1, lim
x→+∞

= V2. (2.1)

The motion of the particle from −∞ to +∞ is possible only when energy E of the

particle is greater than both E1 and E2. We assume this to be the case. The Schrödinger

equation for the particle is

− ~
2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x). (2.2)

We look for behaviour of solutions as x→ −∞, so replace V (x) with V1 and solve the

resulting equation

− ~
2

2m

d2ψ(x)

dx2
+ V1ψ(x) = Eψ(x). (2.3)

or

d2ψ

dx2
+

2m(E − V1)

~2
ψ(x) = 0. (2.4)

Defining k1 by

k1 =

√

2m(E − V1)

~2
(2.5)

we get, for x→ −∞,

9
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d2ψ

dx2
+ k21ψ(x) = 0. (2.6)

Therefore we have

ψ(x) → Aeik1x +Be−ik1x (2.7)

as x→ −∞. Similarly, the most general form of the solution for large x→ ∞ is

ψ(x) → Ceik2x +De−ik2x (2.8)

where

k2 =

√

2m(E − V2)

~2
. (2.9)

The four constants A,B,C,D are not arbitrary and have two relations to satisfy. Hence

two parameters remain undetermined and there will be two linearly independent solutions

for energy E > V1, V2.

The physical interpretation of the wave function for the problem of reflection and

transmission, requires a suitable additional boundary condition that will restrict further

the parameters. We will have only one (linearly independent) solution from which the

reflection and transmission coefficients can be determined.

Let us now turn to analysis of scattering experiment. We consider a beam of particles

incident on a target whose effect will be modelled by the potential V (x) satisfying condi-

tions (29). A part of the beam will get reflected and a part will will be transmitted. If the

beam is incident from the left, (from = −∞), we shall have only transmitted beam on the

right of the target. A part of the incident beam will get reflected and will be travelling to

the left. Also the transmitted beam will be travelling to the right.

Incident

Beam

Reflected

Beam

Transmitted

Beam

Fig. 5

Thus to the left of the target, we have superposition of plane waves travelling to the

left and to the right, but on the right, as x→ ∞, we have wave travelling in the positive x
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direction only.This experimental situation will be described by a wave function satisfying

the following asymptotic behaviour for large distances.

ψ(x)
x→−∞−→ A exp(ik1x) +B exp(−ik1x) (2.10)

ψ(x)
x→+∞−→ C exp(ik2x). (2.11)

i.e. we should look for solutions of the Schrödinger equation satisfying (38) and (39)

(D = 0 in Eq.(36).

The physical interpretation of the coefficients A,B,C in the wave function is obtained

by computing the current density

j(x) =
~

2im

[

ψ∗(x)
d

dx
ψ(x)− ψ(x)

d

dx
ψ∗(x)

]

(2.12)

for large distances. We have

as x→ −∞, j → (|A|2 − |B|2)×
(

~k1
m

)

as x→ +∞ j → |C|2
(

~k2
m

) (2.13)

In the region x→ −∞ we have a superposition of waves travelling to the right and to

the left with fluxes |A|2 × ~k1
m and |B|2 × ~k1

m respectively. In the region x→ +∞ we have

a wave travelling to the right with flux |C|2 ~k2m . Hence we are led to define the reflection

and transmission coefficients as

T =
Flux for the transmitted beam

Incident flux
=

∣

∣

∣

∣

C

A

∣

∣

∣

∣

2 k2
k1

(2.14)

R =
Flux for the reflected beam

Incident flux
=

∣

∣

∣

∣

B

A

∣

∣

∣

∣

2

. (2.15)

We will now show that the conservation of probability holds for a real local potential

and that it implies

∂ρ

∂t
+ ∇ ·~j = 0 (2.16)

ρ(~r, t) = |ψ(x)|2, ~j(~r, t) =
~

2im

(

ψ∗(~r, t)∇ψ(~r, t)− ψ(~r, t)∇ψ∗(~r, t)
)

. (2.17)

For one dimensional problems, ~j has only one component and

j(x) =
~

2im

(

ψ∗(x)
d

dx
ψ(x)− ψ(x)

d

dx
ψ∗(x)

)

. (2.18)

As ψ(x, t) is corresponds to a definite energy E, its time dependence is given by
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ψ(x, t) = e−iEt/hbarψ(x, 0), (2.19)

and hence the probability density

ρ = |ψ(x, 0)|2 (2.20)

is independent of time and dρ
dt = 0. Thus for a stationary state in one dimension

Eq.(44) implies that

dj

dx
⇒ j(x) = constant, (2.21)

Thus j(x) is independent of x and

j(+∞) = j(−∞) (2.22)

Using Eq.(41) we get

~k1
m

(|A|2 − |A|2) = ~k2
m

|C|2. (2.23)

Divide by ~k1
m |A|2 to get

1−
∣

∣

∣

B

A

∣

∣

∣

2
=
k2
k2

|C|2 ⇒ 1−R = T (2.24)

Thus as a consequence of probability conservation we get the result that the transmis-

sion and reflection coefficients must add to unity, i.e. nothing is lost in transmission.

§2 Reflection and Transmission Through a Square Barrier

We wish to compute the reflection and transmission coefficients for a beam incident on a

target represented by a square barrier. The potential is assumed to be of the form

V (x) =











0, x < 0

V0, 0 ≤ x ≤ L

0, x > L

. (2.25)

where V0 > 0.

Solve eigenvalue problem

We assume 0 < E < V0 and write the solutions in the three regions RI , RII , RIII

RI = {x|x < 0}, RII = {x|0 ≤ x ≤ L}, RIII = {x|x > L}.

as
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ψ
I
(x) = A exp(ikx) +B exp(−ikx) (2.26)

ψ
II
(x) = C exp(αx) +B exp(−αx) (2.27)

ψ
III
(x) = F exp(ikx) +G exp(−ikx) (2.28)

where

k =

√

2mE

~2
, α =

√

2m(V0 − E)

~2
. (2.29)

Now we ask what boundary conditions and matching conditions are to be imposed on

the solution of the Schrödinger equation to fix the unknown constants. The wave function

and its derivative must be continuous at x = 0 and at x = L.

Apart from above general requirements, a boundary condition specific to the problem

of finding the reflection and transmission coefficients is to be imposed. Let us assume that

the incident beam is coming from the left. In general some particles will be reflected and

some will be transmitted. Thus we should expect particles travelling both ways, to the

left and to the right in region R
I
, but in R

III
there are only transmitted particles travelling

to the right. Thus the solution in R
III

should have only exp(ikx) term and we must set

G = 0.

Setting G = 0 and requiring continuity of wave function and its derivative at x = 0

and at x = L gives

x = 0 A+B = C +D
ik(A −B) = α(C −D)

x = L C exp(αL) +D exp(−αL) = F exp(ikL)
iαC exp(αL) − iαD exp(−αL) = ikF exp(ikL)

(2.30)

Solving these equations for F/A we get the transmission amplitude as

S(E) =
F

A
=

2iαk

2iαk coshαL+ (k2 − L2) sinhαL
(2.31)

and the transmission coefficient is

T = |S(E)|2 =

[

1 +
sinh2 αL

4(E/V0)(1− E/V0)

]2

(2.32)

A classical particle with energy E < V0 cannot cross the barrier. However, quantum

mechanically there is nonzero probability that the particle will be transmitted and we say

that the particle ’tunnels through the barrier’. For E ≈ V0, α ≈ 0, and one has

T (E) →
(

1 +
mV0L

2

2~2

)−1

. (2.33)
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For an opaque barrier αL >> 1 the transmission coefficient is given by

T (V0) ≈
(16E(E − V0)

V 2
0

)

exp(−2αL). (2.34)



Lesson 3

Harmonic Oscillator

We shall now outline the steps for deriving energy levels and wave functions for harmonic

oscillator in the coordinate representation. The eigenvalue equation

Hψ = Eψ

for the harmonic oscillator becomes the following differential equation in coordinate rep-

resentation
(−~

2

2m

d2

dx2
+

1

2
mω2q2

)

ψ(q) = Eψ(q) (3.1)

The main steps in solution of the eigenvalue problem in coordinate representation are as

follows.

1. In terms of dimensionless variables ξ = αq, λ = 2E/~ω, where α2 = mω/~, the

Schrödinger equation (1) becomes

d2ψ

dξ2
+ (λ− ξ2)ψ = 0 .

2. It can be seen that for large ξ solutions to the differential equation behave as a

polynomial times e±ξ2/2.

3. Define H(ξ) by means of the equation

ψ(ξ) = H(ξ)e−ξ2/2

then H(ξ) satisfies equation.

H ′′ − 2ξH ′ + (λ− 1)H = 0 . (3.2)

4. The above equation is well known Hermite equation and can be solved by the method

of series solution. To solve the Hermite equation we write a series expansion

H(ξ) = ξc(ao + a1ξ + a2ξ
2 + · · · ) (3.3)

15
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The series (3) is substituted in (1), and coefficient of each power of ξ coming from

the L.H.S. of (2) must be set equal to zero. This gives value of c

c(c− 1) = 0 ⇒ c = 0, 1

and recurrence relations for the coefficients an

an+2 =
2n+ 2c+ 1− λ

(n+ c+ 1)(n + c+ 2)
an . (3.4)

5. For c = 0 all the even coefficients are determined in terms of ao and all the odd

coefficients are proportional to a1, and ao and a1 are arbitrary. Thus one gets

H(ξ) = a1y1(ξ) + a2y2(ξ) (3.5)

For c = 1 the solution for H(ξ) is proportional to y2(ξ) and is already contained in

(5). Hence this case, c = 1, need not be considered separately.

Note the eqn.(2) is a second order differential equation and the most general solution

is a linear combination of two independent solutions y1(ξ) and y2(ξ).

6. Next we must explore large ξ behaviour of (5). The relation (4) for large n takes the

form
an+2

an
∼ 2

n
.

which coincides with the ratio of the expansion coefficients, in the series for exp(ξ2)

exp(ξ2) =
∑ ξ2n

n!

Thus the two solutions y1(ξ) and y2(ξ) behave like exp(ξ2) for large ξ and

ψ(ξ) = H(ξ)eξ
2/2 (3.6)

ξ→∞ ∼ eξ
2 × e−ξ2/2 = eξ

2/2 (3.7)

This behaviour of ψ(ξ) for large ξ makes the solution unacceptable because ψ(ξ)

would not be square integrable.

7. The only way one can get a square integrable solution for ψ(q) is that the solution

H(ξ) must reduce to a polynomial. If H(ξ) is to contain a maximum power n then

we must demand the following conditions.



qm-lec-13003 17

(i) an+2 = 0

⇒ 2n+ 2c+ 1− λ = 0

λ = 2n+ 1

and

(ii ) a1 = 0 if n = even

ao = 0 if n = odd.

8. The condition λ = (2n + 1) is equivalent to the energy quantization

E = (n+
1

2
)~ω .

The wave functions are obtained by using conditions, as in (i) and (ii) above, and

the recurrence relations to solve for the coefficients an. The resulting solutions for

Hn are Hermite polynomials and the normalized eigenfunctions are given by

ψn(q) =

(

α√
π 2nn!

)1/2

Hn(αq) exp(−α2q2/2)

These coincide with the wave functions obtained from operator methods 1
n!(a

†)nφ0(q).



Lesson 4

General Properties of Motion In

One Dimension

1. Bound state eigenvalues are non-degenerate :

Proof: We shall show that if for a given bound state energy eigenvalue E there are

two eigenfunctions ψ1 and ψ2, the two solutions must be proportional. Thus we have

Eqs(70) and (71)

− ~
2

2m

d2ψ1

dx2
+ V ψ1 = Eψ1 (4.1)

− ~
2

2m

d2ψ2

dx2
+ V ψ2 = Eψ2 (4.2)

Multiply 70 by ψ2 and 71 by ψ1 and subtract to get

− ~
2

2m

(

ψ2
d2ψ1

dx2
− ψ1

d2ψ2

dx2

)

= 0 (4.3)

or
d

dx

(

ψ2
dψ1

dx
− ψ1

dψ2

dx

)

= 0 (4.4)

Integrating we get
(

ψ2
dψ1

dx
− ψ1

dψ2

dx

)

= const. , C

The constant C can be fixed by evaluating the left hand side at x = ∞. As x→ ±∞,

ψ1 → 0, ψ2 → 0 for bound states

∴ C = 0

Thus we get

ψ2
dψ1

dx
− ψ1

dψ2

dx
= 0 (4.5)

or
1

ψ1

dψ1

dx
− 1

ψ2

dψ2

dx
= 0 (4.6)

18
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Integrating we get

lnψ1 − lnψ2 = const., K (4.7)

or ln(ψ2/ψ1) = lnK (4.8)

or ψ2 = Kψ1 (4.9)

∴ ψ1 and ψ2 are linearly dependent. Hence the bound state eigenvalues in one

dimension are non degenerate. An exception to this result is particle in twin, (or

more) boxes described by the potential

V (x) =











0 0 ≤ x ≤ L

0 2L ≤ x ≤ 3L

∞ otherwise

For this potential each energy eigenvalue has two linearly independent solutions.

2. Behaviour of the energy eigenfunctions for large distances Consider the motion of a

particle in one dimension in a potential V (x) such that

a) V (x) has a minimum value Vmin

b) as x→ +∞ V (x) → V+

c) as x→ −∞ V (x) → V−

Then the large distance behaviour of the corresponding energy eigenfunction is as

follows.

a) The energy eigenfunction for E < Vo is exponentially damped

ψE(x) −→ exp(−α1x) as x→ ∞ (4.10)

ψE(x) −→ exp(α2x) as x→ −∞ (4.11)

where α1 =
√

2m(V
−
E)

~2
, α2 =

√

2m(V+−E)
~2

b) For E > Vo, the solution behaves like plane waves (i.e., it is oscillatory) at large

distances. As x→ ∞

ψ(x) →











A cos k1x+B sin k1x

or

Aeik1x +Be−ik1x k1 =
√

2m(E − V+)~
2

(4.12)

and as x→ −∞ we get

ψ(x) →















A cos k2x+B sin k2x

or

Aeik2x +Be−ik2x k2 =

√
2m(E−V

−
)

~2
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3. Nature and degeneracy of energy eigenvalues

The nature of energy eigenvalues, discrete or continuous, degenerate or non-degenerate,

is generally given by the following rules. It may be added that the rules give us an

idea what to expect for given potential and that exceptions to some of these rules

below are known to exist.

• It can be proved that the energy eigenvalues must be greater than or equal to

Vmin.

• Bound states exist for energy greater than Vmin and but below both V+ and

V−. The corresponding energy eigenvalues are discrete and nondegenerate.

• For E between V+, V−, the eigenvalues are continuous and non-degenerate.

• For E greater than both V+ and V−, the energies are continuous and doubly

degenerate.

You may check validity of these rules for the potential problems for which you have

seen exact solutions such as square well, harmonic oscillator and other potentials .

4. Minimum bound state energy

If the potential function has a minimum at xo with a value Vmin. In classical

mechanics, a state with zero momentum, p = 0, and x = xo can exist and the energy

will be Vmin. In QM x and p cannot have sharp values simultaneously, and for the

lowest bound state the energy will, in general, be greater than Vmin. The ground

state energy can be estimated using the uncertainty principle. We shall illustrate

this by means of the harmonic oscillator.

V (x) =
1

2
mω2x2

Vmin = 0 classically x = 0, p = 0, E = 0 is a possible state. Quantum mechanically,

the values of x and p will have some uncertainties ∆x and ∆p which are subject to

the uncertainty relation ∆p∆x ≃ ~. Taking the averages of x2 and p2 of the order

of (∆x)2 and (∆p)2, respectively, and using ∆p ≈ ~

∆x , we have

< KE > ≈ (∆p)2

2m
=

~
2

2m(∆x)2
(4.13)

< V (x) > ≈ 1

2
mω2(∆x)2 (4.14)

E ≈ ~
2

2m

(

1

∆x

)2

+
1

2
mω2(∆x)2 (4.15)
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Minimizing E w.r.t. ∆x we get

~
2

2m

( −2

(∆x)3

)

+
1

2
mω22(∆x) = 0 (4.16)

(∆x)4 =
~
2

2m
× 2m

mω2
(4.17)

(∆x)2 =
~

mω
(4.18)

E ≈ ~
2

2m

mω

~
+

1

2
mω2 ~

2

mω
(4.19)

= ~ω (4.20)

If we had used ∆p∆x ≥ ~/2 we would have obtained

Emin =
~ω

2

which matches with the exact ground state energy of the harmonic oscillator. In

general this argent can be used to get a quick estimate of the ground state energy

for a given potential.

5. Parity

If the potential is an even function of x,i.e., V (−x) = V (x), the parity operator

commutes with the Hamiltonian.

P̂ Ĥ − ĤP̂ = 0 (4.21)

If uE(x) is an eigenfunction of energy with eigenvalue E, v(x) = Pu(x) = u(−x) is
also an eigenfunction of Hamiltonian with the same eigenvalue E. This is easily seen

by applying Ĥ on v(x).

Ĥv(x) = ĤP̂u(x) (4.22)

= P̂ Ĥu(x) (4.23)

= EP̂u(x) (4.24)

= Ev(x) (4.25)

Now there are two possibilities.

(a) When the eigenvalue is non-degenerate there is only one linearly independent

eigenfunction and u(x) and v(x) must be proportional. There must exist a

constant c such that

u(x) = cv(x) (4.26)

Noting the relation v(x) = u(−x), we have

u(x) = cu(−x) (4.27)
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Making a replacement x→ −x in this equation implies

u(−x) = cu(x) (4.28)

Now Eq.(95) and Eq.(96) imply that c2 = 1 and hence c = ±1. This gives

u(x) = ±u(−x) and u(x) must be an eigenfunction of parity.

(b) In the first case when u(x) and v(x) are linearly independent, v(x) is a new

solution of the eigenvalue problem. This happens if and only if the energy is

degenerate. This is the case for example for a symmetric square well for positive

energies. If form the combinations w1(x), w2(x) defined by

w1(x) = u(x) + v(x) = u(x) + u(−x) (4.29)

w2(x) = u(x)− v(x) = u(x)− u(−x) (4.30)

and these will be eigenfunctions of parity.

Similar comments, though differing in details, will apply for any operator which

commutes with Hamiltonian of the system.

6. Tunnelling through a barrier

Consider an example of a particle is initially confined to a box whose walls can be

represented by a potential barrier of finite height V0. For example considering a

one dimensional box having walls represented by a potential of height V0. Let the

potential inside and outside box be zero.

If the energy of the particle is less than barrier height V0, classicallythe particle will

always remain confined to the box. Similarly for the two potentials shown in Fig. 2

and Fig. 3 bounded motion is possible for a classical particle for energies between

V1 and V2 if the particle is on the left of the maximum at x = b, it cannot cross the

barrier at x=b when E < V2.

However, in quantum mechanics, the bound state energies for both the potentials in

Fig. 2 and in Fig. 3, do not correspond to this range V1 < E < V2 . For potential

of Fig. 2 there are no bound states at all. For all energies E > V0 the energies are

continuous and particle has a non zero wave function at ∞. For the potential of

Fig.3 bound states energy must lie betwee0 and V2. This happens because quantum

mechanically a particle can cross a barrier even if it has energy less than the barrier

height. Exactly in a similar fashion, a classical particle incident from the right

(x > b) withinE < V2 cannot reach the region x < b, whereas a quantum particle

can.

This phenomenon is known as barrier penetration or tunnelling. earliest know ex-

ample of tunnelling phenomenon is α decay.



V0

V1 V1

V2

V2

a b a b

Fig 2 Fig 3

7. Periodic potentials, Energy bands Let V (x) be a periodic potential with period L

V (x+ L) = V (x) .

The energy eigenvalues has bands of allowed energies and forbidden energies and the

energy level diagram is schematically shown in Fig. 4.

Allowed

Allowed

Allowed

Forbidden Band

Forbidden Band

values

values

values

E

Bands in Energy Level Diagram of a Periodic PotentialFig 4
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