UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work!

EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.

e The first matirix has three distinct eigenvalues.

e The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

e the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

e All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

e All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-7 -7 1 -3 4 4 -2 —6 3
@[5 5 -1 ) {0 =3 0 ()[4 0 5
-3 -3 1 0o 2 -1 2 4 -1
-1 2 2 -1 1 2
d | -1 —4 -1 e |2 -2 5
-1 -1 —4 -2 -1 —6

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.

e The first matirix has three distinct eigenvalues.

e The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

e the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

e All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

e All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-7 —7 6 o 0 3 —4 -8 -7
@ [ 8 8 -6 b -2 -2 -3 ()| 1 =3 1
-5 -5 6 -2 0 =5 3 7 6
1 -3 6 0 2 4
d [-1 -1 -2 ) |-1 0 1
-2 2 -6 -2 -2 —6

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?

EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

—7 —6 —9 -7 5 =5 -3 -2 3
4 5 4 b -5 3 =5 (¢ | -2 -3 3
6 4 8 5 -5 3 —4 -8 7
-4 2 =2 —4 -2 6
0 -2 0 (e) | -4 —6 6
2 =2 0 -3 -3 4

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-7 —6 -7 1 0 -4 -1 0 2
-6 -3 —6 b 12 -3 -2 (c) 0 -3 6
2 6 2 2 0 =5 0 -1 2
-1 1 0 —6 4 4
-1 =3 0 e) | -2 0 2
1 1 =2 -1 0 0

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.

(a)

(d)

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-7 —6 5 -5 0 4 1 -1 0
7 6 -5 b -2 -1 2 )| -1 1 1
—4 —4 4 -2 0 1 -1 =1 2
-1 2 =2 4 0 —6
0o -2 1 (e) |3 —2 -3
0 -1 0 8§ —4 -8

[2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-

pendent eigenvector.

_7 _3 _5 —6 —2 4 3 -1 -1

@ 7 3 5 () {6 1 -6 (c) {0 2 -1
-1 -1 1 -2 -1 0 1 -1 3
-3 4 0 2 -1 -3

d |-11 0 ) [-1 0 1
-2 4 -1 4 -2 =5

[2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

6 -8 5 —4 6 0 4 -1 -1
7 9 -5 b)) -1 1 0 (¢ |-1 4 1
—6 —6 7 0 0 —1 4 —5 _1
-3 4 0 0 1 0
~11 0 ) [-1 2 o0
-3 6 -1 2 =31

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-6 —6 3 7 -8 —4 2 0 3
5 5 —3 )y {0 -1 0 () I3 -1 3
—4 —4 3 8§ =8 =5 6 —6 2
-1 -8 4 2 -1 0
0 -5 2 e) -2 1 -1
0 -8 3 2 3 3

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

8Date: Dec 19, 2009; Dead Line : 27 Dec 27 2009
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EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.

e The first matirix has three distinct eigenvalues.

e The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

e the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

e All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

e All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

—6 -5 4 -2 1 =3 -2 —6 3
(a) 6 5 —4 (b) 1 -2 3 ]S (c) 4 0 b
-3 -3 3 1 -1 2 2 4 -1
3 —4 0 -4 —6 -3
(d {1 -1 0 (e) 8 8 4
2 —4 1 0o 3 2

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work!®

EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.
e The first matirix has three distinct eigenvalues.

e The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

e the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

e All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

e All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-6 0 —2 -1 -2 6 -4 -8 =7
(@) [-3 0 =3 ) {0 =36 () [ 1 -3 1
3 0 —1 0 -1 2 3 7 6
10 0 4 -1 -1
(d) |3 1 —6 e) | 2 -1 =2
0 0 1 -3 7 6

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.
e The first matirix has three distinct eigenvalues.

e The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

e the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

e All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

e All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

6 5 —6 -1 2 0 -3 -2 3
@ [-6 5 —6 (b -1 20 () | -2 =3 3
4 —4 9 0 01 —4 -8 7
1 0 O 2 2 1
(d o 1 0 e) | 3 0 =3
3 —6 1 —4 5 7

[2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.

e The first matirix has three distinct eigenvalues.

e The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

e the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

e All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

e All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

6 8 —6 -3 -8 8 -1 0 2

@ [-8 9 =8 @ (o0 1 —4 ()| 0 36
3 —4 3 0 0 -3 0 -1 2
2 -8 —4 -1 1 2

(d) [0 —2 -2 e |2 -2 5
0 8 6 -2 -1 —6

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-5 -9 2 1 -6 =3 1 =10
2 6 -2 ) {0 -1 -1 (¢c)|-1 1 1
5 _5 9 0 2 2 -1 -1 2
2 1 2 0o 2 4
1 2 =2 e) [-1 0 1
-1 1 5 -2 -2 -6

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

BDate: Dec 19, 2009; Dead Line : 27 Dec 27 2009
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work!

EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.

e The first matirix has three distinct eigenvalues.

e The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

e the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

e All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

e All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-5 —7 1 2 2 0 3 -1 -1
@[5 7 -1 (o 1 0 (@ [0 2 =1
-3 -3 3 -2 —4 1 1 -1 3
7T —4 =2 -4 -2 6
(dy |4 -1 =2 (e) | -4 —6 6
0O 0 3 -3 -3 4

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

1PDate: Dec 19, 2009; Dead Line : 27 Dec 27 2009
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UNIVERSITY OF HYDERABAD
School of Physics
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1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

_5 —6 0 -2 40 4 -1 -1
4 -3 4 b 10 20 (¢ |-1 4 1
6 6 1 —4 4 2 4 -5 —1
-1 2 2 —6 4 4
-1 —4 -1 e) -2 0 2
-1 -1 —4 -1 00

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-5 -3 3 2 0 0 2 0 3
2 0 -2 o 18 -2 —4 (¢ I3 -1 3
-6 —6 2 -4 2 4 6 —6 2
1 -3 6 4 0 —6
~1 -1 -2 ) [3 —2 -3
-2 2 -6 8§ —4 -8

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-5 0 -2 1 -1 0 -2 —6 3
-3 1 -3 @ 10 2 0 e 4 0 5
3 0 0 -1 -1 2 2 4 -1
—4 2 =2 2 -1 -3
0 -2 0 e) -1 0 1
2 =2 0 4 -2 =5

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-5 5 5 6 —4 1 -4 -8 -7
—92 4 3 b 3 -1 1 (c) 1 -3 1
-8 6 7 0 0 3 3 7 6
-1 1 0 0 1 0
-1 -3 0 e) |-1 2 0
1 1 =2 2 =31

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

BDate: Dec 19, 2009; Dead Line : 27 Dec 27 2009
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1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

_5 6 —4 3 =2 =2 -3 -2 3
-6 6 —6 b (0 3 0 (¢ | -2 -3 3
2 -3 1 0 -2 1 —4 -8 7
-1 2 =2 2 -1 0
0o -2 1 e) -2 1 -1
0O -1 0 2 3 3

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

PDate: Dec 19, 2009; Dead Line : 27 Dec 27 2009
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UNIVERSITY OF HYDERABAD
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EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.

e The first matirix has three distinct eigenvalues.

e The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

e the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

e All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

e All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

—4 —6 3 5 0 2 -1 0 2
@ 5 7 -3 {2 3 2 () [0 =36
-4 —4 5 -4 0 -1 0 —1 2
—3 4 0 —4 —6 -3
@ [-1 1 o0 e) | 8 8 4
—2 4 -1 0 3 2

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.

(d)

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

—4 -5 3 1 -1 0 1 -1 0
7 8 -3 b)) {2 4 0 (¢c)|-1 1 1
5 5 -2 4 2 3 -1 -1 2
-3 4 0 4 -1 -1
-11 0 e) | 2 -1 —2
-3 6 —1 -3 7 6

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.
e The first matirix has three distinct eigenvalues.

e The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

e the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

e All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

e All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

—4 —4 =2 -3 4 4 3 —1 —1
@ 7 7 2 ) {0 -3 0 () [0 2 -1
1 1 2 0 2 -1 1 -1 3
-1 -8 4 2 2 1
(d) 0 —5 2 (e) 3 0 -3
0 -8 3 -4 5 7

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.

e The first matirix has three distinct eigenvalues.

e The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

e the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

e All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

e All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

—4 —4 1 0 0 3 4 —1 -1
(@) [-3 =3 3 b -2 -2 -3 () | -1 4 1
—6 —6 3 —2 0 -5 4 —5 ]
3 —4 0 -1 1 2
d |1 -1 0 e |2 -2 5
2 —4 1 —2 —-1 -6

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

—4 —4 5 -7 5 =5 2 0 3
3 3 -5 b)) | -5 3 =5 () I3 -1 3
4 4 =5 5 =5 3 6 —6 2
1 0 0 0o 2 4
31 —6 ) [-1 0o 1
00 1 -2 -2 —6

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

—4 -3 —1 1 0 -4 -2 —6 3
—9 3 -9 b) |2 -3 -2 ¢ 4 0 5
2 6 —1 2 0 =5 2 4 -1
1 0 0 —4 =2 6
0O 1 O (e) | -4 —6 6
3 —6 1 -3 -3 4

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

—4 —2 _5 -5 0 4 -4 -8 -7
2 0 2 b)) | -2 -1 2 |1 =3 1
9 2) 3 -2 0 1 3 7 6
2 -8 —4 —6 4 4
0 —2 =2 (e) | -2 0 2
0 8 6 -1 00

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?*

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

—4 -1 -3 -6 -2 4 -3 -2 3
3 0 3 (b) 6 1 -6 (¢ | -2 -3 3
~1 =1 0 -2 -1 0 —4 -8 7
2 1 2 4 0 -6
1 2 =2 ) [3 —2 -3
-1 1 5 8 —4 -8

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

4 -1 2 -4 6 0 -1 0 2
4 -1 2 b -1 1 0 (¢) | 0O =3 6
-5 1 1 0 0 -1 0 -1 2
7T —4 =2 2 -1 =3
4 -1 -2 e [-1 0 1
0 0 3 4 -2 -5

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

—4 0 —6 7T -8 —4 1 -1 0
4 0 6 ) {0 -1 0 (¢c)|-1 1 1
1 0 1 8 —8 =5 -1 -1 2
-1 2 2 0 1 0
—1 —4 -1 (e) |-1 2 0
-1 -1 —4 2 =31

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work®

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

4 2 92 -2 1 =3 3 -1 -1
4 2 2 |1 -2 3 (¢) {0 2 -1
4 —4 —4 1 -1 2 1 -1 3
1 -3 6 2 -1 0
1 -1 -2 e [-2 1 -1
-2 2 -6 2 3 3

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?*

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

44 4 1 -2 6 4 -1 -1
77y @ o =36 © [-1 4 1
T -7 —4 0 -1 2 4 5 1
—4 2 -2 —4 —6 -3
0 -2 0 e) | 8 8 4
2 -2 0 0 3 2

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?

EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.
e The first matirix has three distinct eigenvalues.

e The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

e the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

e All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

e All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

4 4 4 -1 2 0 2 0 3
@ -5 5 4 ) [-1 2 0 () 3 -1 3
5 —5 —4 0 01 6 —6 2
-1 1 0 4 -1 -1
d -1 =3 0 (e) 2 -1 =2
1 1 =2 -3 7 6

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?

EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.
e The first matirix has three distinct eigenvalues.

e The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

e the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

e All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

e All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

—4 6 6 -3 —8 8 -2 —6 3
@ |2 45 ® [0 1 -4 (@4 o 5
—2 92 1 0 0 =3 2 4 -1
-1 2 =2 2 2 1
(d) 0o -2 1 (e) 3 0 =3
0O -1 0 -4 5 7

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?*

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

—4 6 6 1 -6 -3 —4 -8 -7
2 0 3 ) {0 -1 -1 |1 =3 1
-6 6 3 0o 2 2 3 7 6
-3 4 0 -1 1 2
-1 1 0 (e) 2 =2 5
-2 4 -1 -2 -1 —6

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?®

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-3 -7 1 2 20 -3 -2 3
1 5 -1 @ |10 1 0 (¢c) | -2 -3 3
-5 -5 3 -2 —4 1 -4 -8 7
-3 4 0 0 2 4
-1 1 0 e) -1 0 1
-3 6 —1 -2 -2 -6

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?*

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

—3 —6 —4 -2 4 0 -1 0 2
5 -2 _§ @ 10 20 (¢) | O =3 6
6 6 7 —4 4 2 0 -1 2
-1 -8 4 -4 -2 6
0 -5 2 (e) | -4 —6 6
0 -8 3 -3 -3 4

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?*

EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.

e The first matirix has three distinct eigenvalues.

e The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

e the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

e All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

e All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-3 —4 —6 2 0 0 1 -1 0
@[5 6 6 o |8 -2 —4 () -1 1 1
5 5 7 —4 2 4 -1 -1 2
3 —4 0 —6 4 4
d [1 -1 0 ) [-2 0 2
2 -4 1 -1 0 0

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?*

EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.

(d)

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-3 —4 -5 1 -1 0 3 -1 -1
1 0 -1 @10 2 0 (¢) {0 2 -1
4 4 6 1 -1 2 1 -1 3
10 0 4 0 —6
3 1 —6 (e) 13 —2 -3
00 1 8 —4 -8

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work®

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

~3 -3 _5 6 —4 1 4 -1 -1
4 4 5 b)) |3 -1 1 (¢ |-1 4 1
4 4 5 0O 0 3 4 -5 -1
1 0 0 2 -1 =3
0 1 0 e) -1 0 1
3 —6 1 4 -2 =5

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?*

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-3 -3 0 3 -2 =2 2 0 3
4 2 2 b (0 3 0 () I3 -1 3
3 -3 6 0 -2 1 6 —6 2
2 -8 —4 0 1 0
0 —2 -2 e) -1 2 0
0 8 6 2 =31

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work"

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-3 0 -8 5 0 2 -2 —6 3
1 -2 8 o 12 3 2 e 4 0 5
4 0 9 —4 0 -1 2 4 -1
2 1 2 2 -1 0
1 2 -2 ) [-2 1 —1
-1 1 5 2 3 3

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work*?

EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.

e The first matirix has three distinct eigenvalues.

e The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

e the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

e All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

e All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-3 1 1 1 -1 0 —4 -8 -7
@[5 -3 -3 (b 12 4 0 ()| 1 =3 1
-7 3 3 4 2 3 3 7 6
7T —4 =2 -4 —6 -3
(d) |4 -1 =2 (e) 8 8 4
0O 0 3 0o 3 2

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work*?

EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.
e The first matirix has three distinct eigenvalues.

e The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

e the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

e All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

e All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-3 5 § -3 4 4 -3 -2 3
@ [ 6 —4 1 ) {0 =3 0 () [-2 -3 3
6 6 1 0 2 -1 4 -8 7
-1 2 2 4 -1 -1
d -1 —4 -1 e [ 2 -1 —2
-1 -1 —4 -3 7 6

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

43Date: Dec 19, 2009; Dead Line : 27 Dec 27 2009

43



UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work*

EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.
e The first matirix has three distinct eigenvalues.

e The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

e the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

e All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

e All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

3 6 -2 0 0 3 -1 0 2

@ |4 2 4 ® (-2 -2 -3 () [0 =36
7 —6 6 -2 0 -5 0 -1 2
1 -3 6 2 2 1

(d) [-1 -1 =2 e) | 3 0 =3
-2 2 —6 -4 5 7

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?*

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-2 -5 1 -7 5 =5 1 -1 0
1 4 -1 b) |5 3 =5 )| -1 1 1
3 _3 9 5 —5 3 ~1 -1 2
-4 2 =2 -1 1 2
0 -2 0 (e) 2 -2 5
2 =2 0 -2 -1 —6

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—1I :: Home Work*

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-2 =3 1 1 0 —4 3 -1 —1
5 6 —1 b) |2 -3 -2 (¢c) {0 2 -1
3 3 0 2 0 -5 1 -1 3
-1 1 0 0o 2 4
-1 =3 0 ) [-1 0 1
1 1 =2 -2 -2 —6

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work*"

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

—2 -1 -5 —5 0 4 4 -1 —1
4 3 5 @ [-2 -1 2 © -1 4 1
9 _9 4 —2 0 1 4 -5 -1
-1 2 -2 —4 -2 6
0 -2 1 ) [-4 -6 6
0 -1 0 -3 -3 4

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.

(d)

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

92 0 —6 -6 —2 4 2 0 3
0 -2 6 16 1 —6 () I3 -1 3
3 0 7 -2 -1 0 6 —6 2
-3 4 0 —6 4 4
-1 1 0 (e) | -2 0 2
-2 4 -1 -1 0 0

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work®*

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

—2 0 —6 —4 6 0 -2 —6 3
3 1 6 b -1 1 0 e 4 0 5
3 3 4 0 0 —1 2 4 -1
-3 4 0 4 0 —6
~11 0 ) [3 -2 -3
-3 6 —1 8§ —4 -8

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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Quantum Mechanics-1I Set—I :: Home Work?®

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

—2 0 —4 7T -8 —4 -4 -8 -7
1 -3 4 ) {0 =1 0 )| 1 =3 1
9 0 4 &8 —8 =5 3 7 6
-1 -8 4 2 -1 -3
0 -5 2 e) -1 0 1
0 -8 3 4 -2 =5

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

—2 0 3 -2 1 =3 -3 -2 3
6 4 3 11 -2 3 (¢ | -2 -3 3
—2 0 3 1 -1 2 —4 -8 7
3 —4 0 0 1 0
1 =10 e) |-1 2 0
2 -4 1 2 =31

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?

EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.

e The first matirix has three distinct eigenvalues.

e The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

e the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

e All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

e All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

2 0 3 -1 -2 6 -1 0 2
@ [0 —2 6 ) {0 =36 () [0 =36
9 0 3 0 -1 2 0 -1 2
10 0 2 -1 0
d [3 1 —6 ) [—2 1 -1
00 1 2 3 3

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
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M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?

EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.

e The first matirix has three distinct eigenvalues.

e The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

e the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

e All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

e All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

2 0 3 -1 -2 6 -1 0 2
@ [0 —2 6 ) {0 =36 () [0 =36
9 0 3 0 -1 2 0 -1 2
10 0 2 -1 0
d [3 1 —6 ) [—2 1 -1
00 1 2 3 3

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work*

EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.
e The first matirix has three distinct eigenvalues.

e The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

e the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

e All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

e All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

—2 2 _§ -3 -8 8 3 -1 -1
@ |2 -2 6 @ 0 1 —4 () [0 2 -1
2 2 2 0 0 -3 1 -1 3
2 —8 —4 4 -1 -1
(d) {0 —2 =2 (e) 2 -1 =2
0 8 6 -3 7 6

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?»

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-2 2 =2 1 -6 -3 4 -1 -1
-5 6 —7 ) {0 -1 -1 (¢ |-1 4 1
-1 2 -3 0o 2 2 4 -5 —1
2 1 2 2 2 1
1 2 =2 e) | 3 0 =3
-1 1 5 -4 5 7

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010

Quantum Mechanics-I Set—I :: Home Work?

EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.

e The first matirix has three distinct eigenvalues.

e The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

e the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

e All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

e All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-2 3 3 2 2 0 2 0 3
@ | 2 -11 @ (0o 10 (c) {3 -1 3
—4 4 2 -2 —4 1 6 —6 2
7T —4 =2 -1 1 2
(dy |4 -1 =2 (e) 2 =2 5
0 0 3 -2 -1 —6

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
School of Physics

M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work®*”

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-2 3 3 -2 4 0 -2 —6 3
4 -3 0 (b) 0 20 (c) 4 0 5
-6 6 3 —4 4 2 2 4 -1
-1 2 2 0 2 4
-1 —4 -1 e) -1 0 1
-1 -1 —4 -2 -2 -6

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-1 -3 -3 2 0 0 4 -8 -7
1 3 3 b)) | 8 —2 —4 |1 =3 1
1 1 =1 —4 2 4 3 7 6
1 -3 6 -4 -2 6
-1 -1 =2 (e) | -4 —6 6
-2 2 -6 -3 -3 4

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work?»

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-1 =3 1 1 -1 0 -3 =2 3
1 -1 1 @ 10 2 0 (¢c) | -2 -3 3
1 3 -1 -1 -1 2 —4 -8 7
-4 2 =2 —6 4 4
0 —2 0 (e) [—2 0 2
2 =2 0 -1 0 0

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work®

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

~1 -2 —4 6 —4 1 -1 0 2
3 4 4 b 3 -1 1 (c) 0 -3 6
3 3 5 0 0 3 0 -1 2
-1 1 0 4 0 -6
-1 =3 0 (e) |3 —2 -3
1 1 =2 8§ —4 -8

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work®

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

1 _9 _9 3 -2 -2 1 -1 0
1 _9 _9 ® [0 3 o0 e -1 1 1
1 -1 -1 0 -2 1 1 1 2
-1 2 -2 2 -1 —3
0 -2 1 ) [-1 0 1
0 -1 0 4 -2 -5

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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UNIVERSITY OF HYDERABAD
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M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work®

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-1 -1 -3 5 0 2 3 -1 -1
-3 -3 3 (b) 2 3 2 (¢ |0 2 -1
-7 —7 3 —4 0 -1 1 -1 3
-3 4 0 0 1 0
-1 1 0 e) |-1 2 0
-2 4 -1 2 -3 1

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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Quantum Mechanics-1I Set—I :: Home Work?®

EIGENVALUES AND EIGENVECTORS

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following
statements.

e The first matirix has three distinct eigenvalues.

e The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

e the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

e All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

e All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-1 -1 -3 1 -1 0 4 -1 -1
@ |2 2 3 0 [2 4 0 () -1 4 1
2 2 3 4 2 3 4 -5 -1
-3 4 0 2 -1 0
d -1 1 0 e) -2 1 -1
-3 6 —1 2 3 3

2] Give an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all
three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

63Date: Dec 19, 2009; Dead Line : 27 Dec 27 2009

63
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M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work®

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-1 0 =8 -3 4 4 2 0 3
4 3 8 (b) 0 -3 0 () I3 -1 3
—4 —4 7 0o 2 -1 6 —6 2
-1 -8 4 -4 -6 -3
0 -5 2 (e) 8 8 4
0 -8 3 0o 3 2

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

64Date: Dec 19, 2009; Dead Line : 27 Dec 27 2009

64
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M.Sc.Physics II Semester Dec 2009-Apr 2010
Quantum Mechanics-1I Set—I :: Home Work®

1] Find

EIGENVALUES AND EIGENVECTORS

eigenvalues and normalized eigenvectors of the following matrices and verify the following

statements.

(d)

2] Give

The first matirix has three distinct eigenvalues.

The second matrix has two distinct characterstic roots and three linearly independent
eigenvectors.

the third matrix has two different eigenvalues and only two linearly independent eigen-
vectors.

All the three eigenvalues of the fourth matrix are equal and it has only two linearly
independent eigenvectors.

All the three eigenvalues of the fifth matrix are equal and it has only one linearly inde-
pendent eigenvector.

-1 0 -6 0O 0 3 -2 -6 3
3 2 6 o -2 —2 -3 e 4 0 5
-3 -3 5 —2 0 -5 9 4 1
3 -4 0 4 -1 -1
1 —1 0 ) | 2 -1 —2
2 -4 1 -3 7 6

an example of a 3 x 3 matrix which has three linearly independent eigenvectors and all

three eigenvectors correspond to eignevalue 1.

[3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.
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ANSWERS (01):
(a) The eigenvalues are {—2, 1,0} and the eigenvector(s) are

{—-2,{3,-2,1}} {1,{1,—-1,1}} {0,{—1,1,0}}
(b) The eigenvalues are {—3, —3, —1} and the eigenvector(s) are
{=3,{0,-1,1}} {-3,{1,0,0}} {-1,{2,0,1}}
(¢) The eigenvalues are {—2, —2,1} and the eigenvector(s) are
{-2,{-3,1,2}} {1,{-1,1,1}}
(d) The eigenvalues are {—3, —3, —3} and the eigenvector(s) are
{=3,{-1,0,1}} {-3,{-1,1,0}}
(e) The eigenvalues are {—3, —3, —3} and the eigenvector(s) are
{=3,{-1,2,0}}

ANSWERS (02):
(a) The eigenvalues are {6,1,0} and the eigenvector(s) are

{6,{1,-1,1}} {1,{-1,2,1}} {0,{-1,1,0}}
(b) The eigenvalues are {—3, —2, —2} and the eigenvector(s) are
{-3,{—-1,1,1}} {-2,{-3,0,2}} {-2,{0,1,0}}

(¢) The eigenvalues are {3, —2, —2} and the eigenvector(s) are

{3,{-1,0,1}} {-2,{-3,-1,2}}
(d) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{-2,{-2,0,1}} {-2,{1,1,0}}
(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{_27 {_17 _17 1}}
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ANSWERS (03):
(a) The eigenvalues are {3,2,1} and the eigenvector(s) are

{3,{-3,2,2}} {2,{-1,0,1}} {1,{-3,1,2}}

(b) The eigenvalues are {3, —2, —2} and the eigenvector(s) are
{3, {—-1,-1,1}} {-2,{-1,0,1}} {-2,{1,1,0}}
(¢) The eigenvalues are {—1,1,1} and the eigenvector(s) are
{_17{2a172}} {1>{1’1>2}}
(d) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are
{-2,{-1,0,1}} {-2,{1,1,0}}

(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{-2,{-1,1,0}}

ANSWERS (04):
(a) The eigenvalues are {—5, —3,0} and the eigenvector(s) are

{-5,{-5,-3,4}} {-3,{—2,-1,2}} {0,{-1,0,1}}
(b) The eigenvalues are {—3, —3, —1} and the eigenvector(s) are
{-3,{1,0,1}} {-3,{0,1,0}} {-1,{2,1,1}}
(¢) The eigenvalues are {—1,—1,0} and the eigenvector(s) are

{—-1,{1,0,0}} {0,{2,2,1}}

(d) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{—2,{0,0,1}} {-2,{-1,1,0}}

(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{_27 {27 17 1}}
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ANSWERS (05):
(a) The eigenvalues are {4, —1,0} and the eigenvector(s) are

{4,{1,-1,1}} {-1,{-1,1,0}} {0,{-1,2,1}}

(b) The eigenvalues are {—3, —1, —1} and the eigenvector(s) are

{-3,{2,1,1}} {-1.{1,0,1}} {-1,{0,1,0}}

(¢) The eigenvalues are {2,1,1} and the eigenvector(s) are

{2,{-1,1,0}} {1,{1,0,1}}

(d) The eigenvalues are {—1,—1, —1} and the eigenvector(s) are
{-1,{0,1,1}} {-1,{1,0,0}}
(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are
{-2,{2,1,2}}

ANSWERS (06):
(a) The eigenvalues are {—4, 1,0} and the eigenvector(s) are

{-4,{-1,1,0}} {1,{-1,1,1}} {0,{—2,3,1}}

(b) The eigenvalues are {—2, —2, —1} and the eigenvector(s) are

{—-2,{1,0,1}} {—-2,{-1,2,0}} {-1,{2,-3,1}}

(¢) The eigenvalues are {3, 3,2} and the eigenvector(s) are

{3,{—-1,-1,1}} {2,{1,1,0}}

(d) The eigenvalues are {—1,—1,—1} and the eigenvector(s) are

{-1,{0,0,1}} {-1,{2,1,0}}

(e) The eigenvalues are {—1,—1, —1} and the eigenvector(s) are

{_17 {17 07 1}}
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ANSWERS (07):
(a) The eigenvalues are {7,2,1} and the eigenvector(s) are

{7.{1,-1,1}} {2,{-1,1,0}} {1,{3,—2,1}}
(b) The eigenvalues are {—2, —1, —1} and the eigenvector(s) are
{-2,{3,1,0}} {-1.{0,0,1}} {-1,{2,1,0}}
(¢) The eigenvalues are {3,2,2} and the eigenvector(s) are
{3,{1,0,1}} {2,{1,-1,3}}
(d) The eigenvalues are {—1,—1, —1} and the eigenvector(s) are
{-1,{0,0,1}} {-1,{2,1,0}}
(e) The eigenvalues are {1,1,1} and the eigenvector(s) are
{1,{0,0,1}}

ANSWERS (08):
(a) The eigenvalues are {3, —1,0} and the eigenvector(s) are

{3,{1,-1,1}} {-1,{3,—-2,1}} {0,{-1,1,0}}
(b) The eigenvalues are {3, —1, —1} and the eigenvector(s) are
{3,{1,0,1}} {-1,{1,0,2}} {-1,{1,1,0}}

(¢) The eigenvalues are {2,2,—1} and the eigenvector(s) are

{2,{1,1,0}} {-1,{-2,-1,2}}
(d) The eigenvalues are {—1,—1, —1} and the eigenvector(s) are

{-1,{0,1,2}} {-1,{1,0,0}}
(e) The eigenvalues are {2,2,2} and the eigenvector(s) are

{27 {_17 07 2}}
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ANSWERS (09):
(a) The eigenvalues are {3, —1,0} and the eigenvector(s) are

{3,{1,-1,1}} {-1,{-1,1,0}} {0,{—1,2,1}}
S

(b) The eigenvalues are {—1, —1,0} and the eigenvector(s) are
{-1,{-3,0,1}} {-1,{1,1,0}} {0,{-1,1,1}}
(¢) The eigenvalues are {—2, —2,1} and the eigenvector(s) are
{-2,{-3,1,2}} {1,{-1,1,1}}
(d) The eigenvalues are {1,1,1} and the eigenvector(s) are
{1,{0,0,1}} {1,{2,1,0}}

(e) The eigenvalues are {2,2,2} and the eigenvector(s) are

{2,{-1,0,2}}

ANSWERS (10):
(a) The eigenvalues are {—4, —3,0} and the eigenvector(s) are

{—-4,{-1,0,1}} {-3,{-2,1,3}} {0,{0,1,0}}
(b) The eigenvalues are {—1, —1,0} and the eigenvector(s) are
{-1,{0,3,1}} {-1,{1,0,0}} {0,{2,2,1}}
(¢) The eigenvalues are {3, —2, —2} and the eigenvector(s) are
{3,{-1,0,1}} {-2,{-3,-1,2}}
(d) The eigenvalues are {1,1,1} and the eigenvector(s) are
{1,{2,0,1}} {1,{0,1,0}}

(e) The eigenvalues are {3,3,3} and the eigenvector(s) are

{3,{1,0,1}}

70



ANSWERS (11):
(a) The eigenvalues are {2, —1,0} and the eigenvector(s) are

{2,{-2,-2,1}} {-1,{1,1,0}} {0,{-7,—6,2}}
(b) The eigenvalues are {1,1,0} and the eigenvector(s) are
{1,{0,0,1}} {1,{1,1,0}} {0,{2,1,0}}

(¢) The eigenvalues are {—1,1,1} and the eigenvector(s) are

{-1,{2,1,2}} {1,{1,1,2}}
(d) The eigenvalues are {1,1,1} and the eigenvector(s) are

{1,{0,0,1}} {1,{2,1,0}}
(e) The eigenvalues are {3, 3,3} and the eigenvector(s) are

{3,{1,0,1}}

ANSWERS (12):
(a) The eigenvalues are {5,1,0} and the eigenvector(s) are

{5,{-2,-2,1}} {1,{-2,-1,1}} {0,{-1,0,1}}
(b) The eigenvalues are {—3, —3,1} and the eigenvector(s) are
{-3,{0,1,1}} {-3,{1,0,0}} {1,{—2,1,0}}

(¢) The eigenvalues are {—1, —1,0} and the eigenvector(s) are

{-1,{1,0,0}} {0,{2,2,1}}
(d) The eigenvalues are {2,2,2} and the eigenvector(s) are

{2,{0,-1,2}} {2,{1,0,0}}
(e) The eigenvalues are {—3, —3, —3} and the eigenvector(s) are

{_37 {_17 27 0}}

ANSWERS (13):
(a) The eigenvalues are {4, —3,2} and the eigenvector(s) are

{4,{-1,1,0}} {-3,{1,0,1}} {2,{-1,1,1}}
(b) The eigenvalues are {1,1,0} and the eigenvector(s) are
{1,{0,-1,2}} {1,{1,0,0}} {0,{-3,—1,1}}
(¢) The eigenvalues are {2,1,1} and the eigenvector(s) are
{2,{-1,1,0}} {1,{1,0,1}}
(d) The eigenvalues are {3, 3,3} and the eigenvector(s) are
{3,{2,0,1}} {3,{1,1,0}}
(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{_27 {_17 _17 1}}
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ANSWERS (14):
(a) The eigenvalues are {3,2,0} and the eigenvector(s) are

{3,{1,-1,1}} {2,{-1,1,0}} {0,{3,—-2,1}}
(b) The eigenvalues are {2,1,1} and the eigenvector(s) are

{2,{-1,0,2}} {1,{0,0,1}} {1,{-2,1,0}}
(¢) The eigenvalues are {3,3,2} and the eigenvector(s) are

{3,{-1,-1,1}} {2,{1,1,0}}
(d) The eigenvalues are {3, 3,3} and the eigenvector(s) are
{3,{1,0,2}} {3,{1,1,0}}
(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are
{-2,{-1,1,0}}

ANSWERS (15):
(a) The eigenvalues are {—5,—3,1} and the eigenvector(s) are

{-5,{-1,0,1}} {-3,{-3,1,3}} {1,{-1,1,2}}
(b) The eigenvalues are {—2,2,2} and the eigenvector(s) are
{—=2,{1,0,1}} {2,{0,0,1}} {2,{1,1,0}}
(¢) The eigenvalues are {3, 2,2} and the eigenvector(s) are
{3,{1,0,1}} {2,{1,—-1,3}}
(d) The eigenvalues are {—3, —3, —3} and the eigenvector(s) are
{-3,{-1,0,1}} {-3,{-1,1,0}}

(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{(=2,{21,1}}

ANSWERS (16):
(a) The eigenvalues are {—2,—1,0} and the eigenvector(s) are

{-2,{-1,1,0}} {-1,{3,-2,2}} {0,{3,-2,3}}
(b) The eigenvalues are {2,2,0} and the eigenvector(s) are
{2,{1,0,2}} {2,{1,2,0}} {0,{0,—2,1}}

(¢) The eigenvalues are {2,2,—1} and the eigenvector(s) are

{2,{1,1,0}} {-1,{-2,-1,2}}
(d) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{-2,{-2,0,1}} {-2,{1,1,0}}
(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{_27 {27 17 2}}
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ANSWERS (17):
(a) The eigenvalues are {—3, —2,1} and the eigenvector(s) are

{-3,{-1,0,1}} {—2,{-2,1,3}} {1,{0,1,0}}
(b) The eigenvalues are {2,2,1} and the eigenvector(s) are
{2a{0>0a1}} {2>{_1>170}} {17{17071}}

(¢) The eigenvalues are {—2, —2,1} and the eigenvector(s) are

{_2>{_3>1a2}} {la{_lalal}}
(d) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{-2,{-1,0,1}} {-2,{1,1,0}}
(e) The eigenvalues are {—1, —1, —1} and the eigenvector(s) are

{-1,{1,0,1}}

ANSWERS (18):
(a) The eigenvalues are {5,1,0} and the eigenvector(s) are

{5,{1,1,1}} {1,{0,—-1,1}} {0,{1,—-1,2}}
(b) The eigenvalues are {3, 3,2} and the eigenvector(s) are
{3,{-1,0,3}} {3,{4,3,0}} {2,{1,1,0}}
(¢) The eigenvalues are {3, —2, —2} and the eigenvector(s) are
{3,{—-1,0,1}} {-2,{-3,-1,2}}
(d) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are
{-2,{0,0,1}} {-2,{-1,1,0}}
(e) The eigenvalues are {1,1,1} and the eigenvector(s) are
{1,{0,0,1}}

ANSWERS (19):
(a) The eigenvalues are {3, —1,0} and the eigenvector(s) are

{3,{-2,-2,1}} {-1,{-1,0,1}} {0,{—2,—1,1}}
(b) The eigenvalues are {3, 3,1} and the eigenvector(s) are
{3,{0,-1,1}} {3,{1,0,0}} {1,{1,0,1}}

(¢) The eigenvalues are {—1,1,1} and the eigenvector(s) are

{-1,{2,1,2}} {1,{1,1,2}}
(d) The eigenvalues are {—1,—1,—1} and the eigenvector(s) are

{-1,{0,1,1}} {-1,{1,0,0}}
(e) The eigenvalues are {2,2,2} and the eigenvector(s) are

{27 {_17 07 2}}
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ANSWERS (20):
a) The eigenvalues are {5,2,1} and the eigenvector(s) are

{5,{1,-1,1}} {2,{-1,1,0}} {1,{3,—-2,1}}
(b) The eigenvalues are {3, 3,1} and the eigenvector(s) are
{3,{-1,0,1}} {3,{0,1,0}} {1,{-1,-1,2}}
(¢) The eigenvalues are {—1,—1,0} and the eigenvector(s) are
{-1,{1,0,0}} {0,{2,2,1}}
(d) The eigenvalues are {—1,—1,—1} and the eigenvector(s) are

{-1,{0,0,1}} {-1,{2,1,0}}

(e) The eigenvalues are {2,2,2} and the eigenvector(s) are

{2,{-1,0,2}}
ANSWERS (21):
(a) The eigenvalues are {3, —2,1} and the eigenvector(s) are

{3,{-1,2,1}} {-2,{-1,1,1}} {1,{-1,1,0}}
(b) The eigenvalues are {3, 3,2} and the eigenvector(s) are
{3,{0,0,1}} {3,{—1,2,0}} {2,{—1,1,2}}
(c) The eigenvalues are {2,1,1} and the eigenvector(s) are
{2,{-1,1,0}} {1,{1,0,1}}
(d) The eigenvalues are {—1, —1, —1} and the eigenvector(s) are

{-1,{0,0,1}} {-1,{2,1,0}}

(e) The eigenvalues are {3,3,3} and the eigenvector(s) are

{3,{1,0,1}}
ANSWERS (22):

(a) The eigenvalues are {3,2,0} and the eigenvector(s) are
{3’{_2’371}} {27{_1>1a1}} {0,{—1,1,0}}
(b) The eigenvalues are {—3, —3, —1} and the eigenvector(s) are
{_3’{07_171}} {_37{1’070}} {_L{anal}}
(¢) The eigenvalues are {3,3,2} and the eigenvector(s) are
{37{_17_171}} {27{1’170}}
(d) The eigenvalues are {—1,—1,—1} and the eigenvector(s) are
{_1’{071’2}} {_17{1’070}}

(e) The eigenvalues are {3,3,3} and the eigenvector(s) are

{3,{1,0,1}}
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ANSWERS (23):
(a) The eigenvalues are {—3, —1,0} and the eigenvector(s) are

{-3,{1,0,1}} {-1,{5,-3,3}} {0,{—1,1,0}}
(b) The eigenvalues are {—3, —2, —2} and the eigenvector(s) are
{=3,{-1,1,1}} {-2,{-3,0,2}} {-2,{0,1,0}}
(¢) The eigenvalues are {3,2,2} and the eigenvector(s) are
{3,{1,0,1}} {2,{1,-1,3}}
(d) The eigenvalues are {1,1,1} and the eigenvector(s) are
{1,{0,0,1}} {1,{2,1,0}}
(e) The eigenvalues are {—3, —3, —3} and the eigenvector(s) are
{=3,{-1,2,0}}

ANSWERS (24):
(a) The eigenvalues are {—5,—1,0} and the eigenvector(s) are

{-5,{-1,1,1}} {-1,{-1,2,1}} {0,{-1,1,0}}
(b) The eigenvalues are {3, —2, —2} and the eigenvector(s) are

{3, {—-1,-1,1}} {-2,{-1,0,1}} {-2,{1,1,0}}
(¢) The eigenvalues are {2,2, —1} and the eigenvector(s) are

{2,{1,1,0}} {-1,{-2,-1,2}}
(d) The eigenvalues are {1,1,1} and the eigenvector(s) are
{1,{2,0,1}} {1,{0,1,0}}
(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are
{=2,{-1,-1L,1}}

ANSWERS (25):
(a) The eigenvalues are {—3,1,0} and the eigenvector(s) are

{=3,{-1,0,1}} {1,{-1,1,2}} {0,{-3,2,6}}

(b) The eigenvalues are {—3, —3, —1} and the eigenvector(s) are
{-3,{1,0,1}} {-3,{0,1,0}} {-1,{2,1,1}}
(¢) The eigenvalues are {—2, —2,1} and the eigenvector(s) are
{-2,{-3,1,2}} {1,{-1,1,1}}
(d) The eigenvalues are {1,1,1} and the eigenvector(s) are
{1,{0,0,1}} {1,{2,1,0}}

(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{-2,{-1,1,0}}
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ANSWERS (26):
(a) The eigenvalues are {—2, 1,0} and the eigenvector(s) are

{-2,{-1,1,0}} {1,{-1,0,1}} {0,{-2,-1,2}}
(b) The eigenvalues are {—3, —1, —1} and the eigenvector(s) are
{-3,{2,1,1}} {-1,{1,0,1}} {-1,{0,1,0}}
(c) The eigenvalues are {3, —2, —2} and the eigenvector(s) are
{3,{-1,0,1}} {-2,{-3,-1,2}}
(d) The eigenvalues are {2,2,2} and the eigenvector(s) are
{2,{0,-1,2}} {2,{1,0,0}}

(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{-2,{2,1,1}}

ANSWERS (27):
(a) The eigenvalues are {—3, —1,0} and the eigenvector(s) are

{-3,{-1,1,0}} {-1,{-2,3,1}} {0,{-1,1,1}}
(b) The eigenvalues are {—2,—2, —1} and the eigenvector(s) are
{—-2,{1,0,1}} {-2,{-1,2,0}} {-1,{2,—-3,1}}
(¢) The eigenvalues are {—1,1, 1} and the eigenvector(s) are
{-1,{2,1,2}} {1,{1,1,2}}
(d) The eigenvalues are {3, 3,3} and the eigenvector(s) are
{3,{2,0,1}} {3,{1,1,0}}
(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are
{=2,{2,1,2}}

ANSWERS (28):
(a) The eigenvalues are {—3, —1,0} and the eigenvector(s) are

{-3,{1,1,1}} {-1,{1,1,2}} {0,{1,2,3}}
(b) The eigenvalues are {—2, —1,—1} and the eigenvector(s) are
{-2,{3,1,0}} {-1,{0,0,1}} {-1,{2,1,0}}
(¢) The eigenvalues are {—1,—1,0} and the eigenvector(s) are
{-1,{1,0,0}} {0,{2,2,1}}
(d) The eigenvalues are {3, 3,3} and the eigenvector(s) are
{3,{1,0,2}} {3,{1,1,0}}
(e) The eigenvalues are {—1,—1, —1} and the eigenvector(s) are

{_17 {17 07 1}}
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ANSWERS (29):
(a) The eigenvalues are {—2, —1,0} and the eigenvector(s) are

{—2,{-3,3,1}} {-1,{-2,2,1}} {0,{0,1,0}}
(b) The eigenvalues are {3, —1, —1} and the eigenvector(s) are
{3,{1,0,1}} {-1,{1,0,2}} {-1,{1,1,0}}
(¢) The eigenvalues are {2,1,1} and the eigenvector(s) are
{2,{-1,1,0}} {1,{1,0,1}}
(d) The eigenvalues are {—3, —3, —3} and the eigenvector(s) are
{=3,{-1,0,1}} {-3,{-1,1,0}}

(e) The eigenvalues are {1,1,1} and the eigenvector(s) are

{1,{0,0,1}}

ANSWERS (30):
(a) The eigenvalues are {—4, —2,0} and the eigenvector(s) are

{-4,{-1,-1,1}} {-2,{1,1,0}} {0,{0,—-1,1}}
(b) The eigenvalues are {—1, —1,0} and the eigenvector(s) are
{-1,{-3,0,1}} {-1,{1,1,0}} {0,{-1,1,1}}
(¢) The eigenvalues are {3, 3,2} and the eigenvector(s) are
{3,{—-1,-1,1}} {2,{1,1,0}}
(d) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are
{—-2,{—2,0,1}} {-2,{1,1,0}}
(e) The eigenvalues are {2,2,2} and the eigenvector(s) are
{2,{-1,0,2}}

ANSWERS (31):
(a) The eigenvalues are {—4,3,0} and the eigenvector(s) are

{—4,{-1,-1,1}} {3,{0,—-1,1}} {0,{1,1,0}}
(b) The eigenvalues are {—1,—1,0} and the eigenvector(s) are
{-1,{0,3,1}} {-1,{1,0,0}} {0,{2,2,1}}
(¢) The eigenvalues are {3,2,2} and the eigenvector(s) are
{3,{1,0,1}} {2,{1,-1,3}}
(d) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are
{-2,{-1,0,1}} {-2,{1,1,0}}
(e) The eigenvalues are {2,2,2} and the eigenvector(s) are

{27 {_17 07 2}}
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ANSWERS (32):
(a) The eigenvalues are {—4, 1,0} and the eigenvector(s) are

{-4,{-1,-1,1}} {1,{0,-1,1}} {0,{1,1,0}}
(b) The eigenvalues are {1, 1,0} and the eigenvector(s) are
{1,{0,0,1}} {1,{1,1,0}} {0,{2,1,0}}

(¢) The eigenvalues are {2,2, —1} and the eigenvector(s) are

{2,{1,1,0}} {-1,{-2,-1,2}}
(d) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{-2,{0,0,1}} {-2,{-1,1,0}}
(e) The eigenvalues are {3, 3,3} and the eigenvector(s) are

{3,{1,0,1}}

ANSWERS (33):
(a) The eigenvalues are {2, —1,0} and the eigenvector(s) are

{2,{1,1,0}} {-1,{0,—1,1}} {0,{-3,—4,2}}
(b) The eigenvalues are {—3, —3,1} and the eigenvector(s) are
{-3,{0,1,1}} {-3,{1,0,0}} {1,{—2,1,0}}
(¢) The eigenvalues are {—2, —2, 1} and the eigenvector(s) are
{—-2,{-3,1,2}} {1,{-1,1,1}}
(d) The eigenvalues are {—1,—1, —1} and the eigenvector(s) are
{-1,{0,1,1}} {-1,{1,0,0}}
(e) The eigenvalues are {3,3,3} and the eigenvector(s) are
{3,{1,0,1}}

ANSWERS (34):
(a) The eigenvalues are {—3,2,0} and the eigenvector(s) are

{=3,{0,-1,1}} {2,{1,1,0}} {0,{-3,—4,2}}
(b) The eigenvalues are {1,1,0} and the eigenvector(s) are

{1,{0,-1,2}} {1,{1,0,0}} {0,{-3,—1,1}}
(¢) The eigenvalues are {3, —2, —2} and the eigenvector(s) are

{3,{-1,0,1}} {-2,{-3,-1,2}}
(d) The eigenvalues are {—1,—1,—1} and the eigenvector(s) are
{-1,{0,0,1}} {-1,{2,1,0}}

(e) The eigenvalues are {—3, —3, —3} and the eigenvector(s) are

{_37 {_17 27 0}}
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ANSWERS (35):
(a) The eigenvalues are {4,3, —2} and the eigenvector(s) are

{4,{-1,1,0}} {3,{-1,1,1}} {-2,{1,0,1}}
(b) The eigenvalues are {2,1, 1} and the eigenvector(s) are
{2,{-1,0,2}} {1,{0,0,1}} {1,{-2,1,0}}
(¢) The eigenvalues are {—1,1,1} and the eigenvector(s) are
{-1,{2,1,2}} {1,{1,1,2}}
(d) The eigenvalues are {—1,—1,—1} and the eigenvector(s) are
{-1,{0,0,1}} {-1,{2,1,0}}
(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are
{=2,{-1,-1,1}}

ANSWERS (36):
(a) The eigenvalues are {3, —2,1} and the eigenvector(s) are

{3,{-1,1,0}} {-2,{-2,-1,2}} {1,{-1,0,1}}
(b) The eigenvalues are {—2,2,2} and the eigenvector(s) are
{-2,{1,0,1}} {2,{0,0,1}} {2,{1,1,0}}

(¢) The eigenvalues are {—1, —1,0} and the eigenvector(s) are

{-1,{1,0,0}} {0,{2,2,1}}
(d) The eigenvalues are {—1,—1, —1} and the eigenvector(s) are

{-1,{0,1,2}} {-1,{1,0,0}}
(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{-2,{-1,1,0}}

ANSWERS (37):
(a) The eigenvalues are {7,2,1} and the eigenvector(s) are

{7, {-1,1,1}} {2,{-2,1,1}} {1,{-1,1,0}}
(b) The eigenvalues are {2,2,0} and the eigenvector(s) are
{2,{1,0,2}} {2,{1,2,0}} {0,{0,—2,1}}

(¢) The eigenvalues are {2,1,1} and the eigenvector(s) are

{2,{-1,1,0}} {1,{1,0,1}}
(d) The eigenvalues are {1,1,1} and the eigenvector(s) are

{1,{0,0,1}} {1,{2,1,0}}
(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{_27 {27 17 1}}
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ANSWERS (38):
(a) The eigenvalues are {2,1,0} and the eigenvector(s) are

{2,{-1,0,1}} {1,{-1,1,0}} {0,{-2,-1,2}}
(b) The eigenvalues are {2,2,1} and the eigenvector(s) are
{2a{0>0a1}} {2>{_1>170}} {17{17071}}
(¢) The eigenvalues are {3,3,2} and the eigenvector(s) are
{37{_17_1>1}} {2>{1’1>0}}
(d) The eigenvalues are {1,1,1} and the eigenvector(s) are
{1,{2,0,1}} {1,{0,1,0}}

(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{-2,{2,1,2}}

ANSWERS (39):
(a) The eigenvalues are {5,1,0} and the eigenvector(s) are

{5,{-1,1,1}} {1,{-2,1,1}} {0,{-1,1,0}}
(b) The eigenvalues are {3, 3,2} and the eigenvector(s) are
{3,{-1,0,3}} {3,{4,3,0}} {2,{1,1,0}}
(¢) The eigenvalues are {3,2,2} and the eigenvector(s) are
{3,{1,0,1}} {2,{1,—-1,3}}
(d) The eigenvalues are {1,1,1} and the eigenvector(s) are
{1,{0,0,1}} {1,{2,1,0}}
(e) The eigenvalues are {—1,—1, —1} and the eigenvector(s) are
{=1,{1,0,1}}

ANSWERS (40):
(a) The eigenvalues are {3,2,0} and the eigenvector(s) are

{3’{_1’273}} {27{_375a6}} {Oa{_lalal}}

e eigenvalues are {3, 3,1} and the eigenvector(s) are

b) The ei 1 3,3,1} and the ei
{3’{07_171}} {37{1’070}} {1’{17()’1}}
(¢) The eigenvalues are {2,2, —1} and the eigenvector(s) are
{2’{171’0}} {_17{_27_172}}

e eigenvalues are {2,2,2} and the eigenvector(s) are

d) The ei 1 2,2,2} and the ei
{2’{07_172}} {27{1’070}}

(e) The eigenvalues are {1,1,1} and the eigenvector(s) are

{1,{0,0,1}}
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ANSWERS (41):
(a) The eigenvalues are {5, —2,1} and the eigenvector(s) are

{5,{-1,1,1}} {-2,{0,1,0}} {1,{-2,2,1}}
(b) The eigenvalues are {3, 3,1} and the eigenvector(s) are
{3a{_1a0>1}} {37 {0’170}} {17{_17_172}}
(¢) The eigenvalues are {—2, —2,1} and the eigenvector(s) are
{_2>{_3>1a2}} {la{_lalal}}
(d) The eigenvalues are {3, 3,3} and the eigenvector(s) are
{3,{2,0,1}} {3,{1,1,0}}
(e) The eigenvalues are {2,2,2} and the eigenvector(s) are
{2,{-1,0,2}}

ANSWERS (42):
(a) The eigenvalues are {—2,—1,0} and the eigenvector(s) are

{-2,{1,-1,2}} {-1,{1,1,1}} {0,{0,—1,1}}
(b) The eigenvalues are {3, 3,2} and the eigenvector(s) are
{3,{0,0,1}} {3,{—1,2,0}} {2,{—1,1,2}}
(¢) The eigenvalues are {3, —2, —2} and the eigenvector(s) are
{3,{—-1,0,1}} {—2,{-3,—-1,2}}
(d) The eigenvalues are {3, 3,3} and the eigenvector(s) are
{3,{1,0,2}} {3,{1,1,0}}
(e) The eigenvalues are {2,2,2} and the eigenvector(s) are

{27 {_17 07 2}}

ANSWERS (43):
(a) The eigenvalues are {—5, —3,2} and the eigenvector(s) are

{-5,{0,—1,1}} {-3,{-1,-3,3}} {2,{1,1,0}}

(b) The eigenvalues are {—3, —3, —1} and the eigenvector(s) are

{-3,{0,—1,1}} {-3,{1,0,0}} {-1,{2,0,1}}

(¢) The eigenvalues are {—1,1,1} and the eigenvector(s) are

{-1,{2,1,2}} {1,{1,1,2}}

(d) The eigenvalues are {—3, —3, —3} and the eigenvector(s) are

{-3,{-1,0,1}} {-3,{-1,1,0}}

(e) The eigenvalues are {3,3,3} and the eigenvector(s) are

{3,{1,0,1}}
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ANSWERS (44):
(a) The eigenvalues are {4,2, —1} and the eigenvector(s) are

{4,{-2,-2,1}} {2,{-2,-1,2}} {-1,{-1,0,1}}
(b) The eigenvalues are {—3, —2, —2} and the eigenvector(s) are

{=3,{-1,1,1}} {-2,{-3,0,2}} {-2,{0,1,0}}
(¢) The eigenvalues are {—1,—1,0} and the eigenvector(s) are

{-1,{1,0,0}} {0,{2,2,1}}
(d) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are
{-2,{-2,0,1}} {-2,{1,1,0}}
(e) The eigenvalues are {3, 3,3} and the eigenvector(s) are
{3,{1,0,1}}

ANSWERS (45):
(a) The eigenvalues are {3,2, —1} and the eigenvector(s) are

{3,{-1,1,0}} {2,{-1,1,1}} {-1,{1,0,1}}
(b) The eigenvalues are {3, —2, —2} and the eigenvector(s) are
{3, {—-1,-1,1}} {-2,{-1,0,1}} {-2,{1,1,0}}
(c) The eigenvalues are {2,1, 1} and the eigenvector(s) are
{2,{-1,1,0}} {1,{1,0,1}}
(d) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are
{—-2,{-1,0,1}} {—2,{1,1,0}}
(e) The eigenvalues are {—3, —3, —3} and the eigenvector(s) are
{=3,{-1,2,0}}

ANSWERS (46):
(a) The eigenvalues are {3,1,0} and the eigenvector(s) are

{3,{-1,2,1}} {1,{-1,1,0}} {0,{-1,1,1}}
(b) The eigenvalues are {—3, —3, —1} and the eigenvector(s) are
{-3,{1,0,1}} {-3,{0,1,0}} {-1,{2,1,1}}
(¢) The eigenvalues are {3,3,2} and the eigenvector(s) are
{3,{-1,-1,1}} {2,{1,1,0}}
(d) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are
{-2,{0,0,1}} {-2,{-1,1,0}}
(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{_27 {_17 _17 1}}
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ANSWERS (47):
(a) The eigenvalues are {4,2, —1} and the eigenvector(s) are

{4,{-1,1,1}} {2,{-2,3,1}} {-1,{-1,1,0}}
(b) The eigenvalues are {—3, —1, —1} and the eigenvector(s) are
{-3,{2,1,1}} {-1.{1,0,1}} {-1,{0,1,0}}
(¢) The eigenvalues are {3,2,2} and the eigenvector(s) are
{3,{1,0,1}} {2,{1,-1,3}}
(d) The eigenvalues are {—1,—1, —1} and the eigenvector(s) are

{-1,{0,1,1}} {-1,{1,0,0}}

(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are
{-2,{-1,1,0}}

ANSWERS (48):
(a) The eigenvalues are {4, —2, 1} and the eigenvector(s) are

{4,{—-1,1,1}} {-2,{0,1,0}} {1,{—2,2,1}}
(b) The eigenvalues are {—2,—2, —1} and the eigenvector(s) are

{—-2,{1,0,1}} {-2,{-1,2,0}} {-1,{2,-3,1}}

(¢) The eigenvalues are {2,2, —1} and the eigenvector(s) are
{2,{1,1,0}} {-1,{-2,-1,2}}
(d) The eigenvalues are {—1,—1,—1} and the eigenvector(s) are
{-1,{0,0,1}} {-1,{2,1,0}}
(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{_27 {27 17 1}}
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ANSWERS (49):
(a) The eigenvalues are {4, —2,1} and the eigenvector(s) are

{4,{-1,1,1}} {-2,{-1,1,0}} {1,{-2,1,1}}
(b) The eigenvalues are {—2,—1, —1} and the eigenvector(s) are
{-2,{3,1,0}} {-1,{0,0,1}} {-1,{2,1,0}}
(¢) The eigenvalues are {—2, —2,1} and the eigenvector(s) are
{_27{_371a2}} {la{_lalal}}
(d) The eigenvalues are {—1,—1,—1} and the eigenvector(s) are
{_L{O»Oal}} {_1>{2a1>0}}
(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are
{-2,{2,1,2}}

ANSWERS (50):
(a) The eigenvalues are {—3,2,0} and the eigenvector(s) are

{-3,{0,1,0}} {2,{-1,1,1}} {0,{-2,2,1}}
(b) The eigenvalues are {3, —1, —1} and the eigenvector(s) are

{3,{1,0,1}} {-1,{1,0,2}} {-1,{1,1,0}}
(¢) The eigenvalues are {3, —2, —2} and the eigenvector(s) are

{3,{—-1,0,1}} {—2,{-3,—-1,2}}
(d) The eigenvalues are {—1,—1, —1} and the eigenvector(s) are
{-1,{0,1,2}} {-1,{1,0,0}}
(e) The eigenvalues are {—1,—1, —1} and the eigenvector(s) are
{=1,{1,0,1}}

ANSWERS (51):
(a) The eigenvalues are {4,1,0} and the eigenvector(s) are

{4,{0,1,0}} {1,{1,1,1}} {0,{3,3,2}}
(b) The eigenvalues are {—1,—1,0} and the eigenvector(s) are
{-1,{-3,0,1}} {-1,{1,1,0}} {0,{-1,1,1}}

(¢) The eigenvalues are {—1,1,1} and the eigenvector(s) are

{-1,{2,1,2}} {1,{1,1,2}}
(d) The eigenvalues are {1,1,1} and the eigenvector(s) are

{1,{0,0,1}} {1,{2,1,0}}
(e) The eigenvalues are {1,1,1} and the eigenvector(s) are

{1,{0,0,1}}
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ANSWERS (52):
(a) The eigenvalues are {—2, 1,0} and the eigenvector(s) are

{-=2,{0,1,0}} {1,{1,2,1}} {0,{3,6,2}}
(b) The eigenvalues are {—1, —1,0} and the eigenvector(s) are
{_1a{0>3’1}} {—1,{1,0,0}} {07 {27271}}
(¢) The eigenvalues are {—1,—1,0} and the eigenvector(s) are
{_17{1a0>0}} {O> {2’271}}
(d) The eigenvalues are {1,1,1} and the eigenvector(s) are
{1,{2,0,1}} {1,{0,1,0}}
(e) The eigenvalues are {2,2,2} and the eigenvector(s) are
{2,{-1,0,2}}

ANSWERS (52):
(a) The eigenvalues are {—2,1,0} and the eigenvector(s) are

{-2,{0,1,0}} {1,{1,2,1}} {0,{3,6,2}}
(b) The eigenvalues are {—1, —1,0} and the eigenvector(s) are
{-1,{0,3,1}} {-1,{1,0,0}} {0,{2,2,1}}
(¢) The eigenvalues are {—1, —1,0} and the eigenvector(s) are
{-1,{1,0,0}} {0,{2,2,1}}
(d) The eigenvalues are {1,1,1} and the eigenvector(s) are
{1,{2,0,1}} {1,{0,1,0}}
(e) The eigenvalues are {2,2,2} and the eigenvector(s) are
{2,{-1,0,2}}

ANSWERS (54):
(a) The eigenvalues are {—4,2,0} and the eigenvector(s) are

{-4,{-1,1,0}} {2,{-1,1,1}} {0,{—2,1,1}}
(b) The eigenvalues are {—3, —3,1} and the eigenvector(s) are
{-3,{0,1,1}} {-3,{1,0,0}} {1,{-2,1,0}}
(¢) The eigenvalues are {3,3,2} and the eigenvector(s) are
{3,{-1,—-1,1}} {2,{1,1,0}}
(d) The eigenvalues are {2,2,2} and the eigenvector(s) are
{2,{0,-1,2}} {2,{1,0,0}}
(e) The eigenvalues are {3,3,3} and the eigenvector(s) are

{3,{1,0,1}}
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ANSWERS (55):
(a) The eigenvalues are {2, —1,0} and the eigenvector(s) are

{2,{1,3,1}} {-1,{0,1,1}} {0,{1,2,1}}
(b) The eigenvalues are {1,1,0} and the eigenvector(s) are
{1,{0,-1,2}} {1,{1,0,0}} {0,{-3,—1,1}}
(¢) The eigenvalues are {3,2,2} and the eigenvector(s) are
{3,{1,0,1}} {2,{1,-1,3}}
(d) The eigenvalues are {3, 3,3} and the eigenvector(s) are
{3,{2,0,1}} {3,{1,1,0}}
(e) The eigenvalues are {3, 3,3} and the eigenvector(s) are
{3,{1,0,1}}

ANSWERS (56):
(a) The eigenvalues are {—2,1,0} and the eigenvector(s) are

{-2,{0,-1,1}} {1,{1,1,0}} {0,{-3,—4,2}}
(b) The eigenvalues are {2,1,1} and the eigenvector(s) are
{2,{-1,0,2}} {1,{0,0,1}} {1,{-2,1,0}}
(¢) The eigenvalues are {2,2, —1} and the eigenvector(s) are
{2,{1,1,0}} {-1,{-2,-1,2}}
(d) The eigenvalues are {3, 3,3} and the eigenvector(s) are
{3,{1,0,2}} {3,{1,1,0}}

(e) The eigenvalues are {—3, —3, —3} and the eigenvector(s) are

{=3,{-1,2,0}}

ANSWERS (57):
(a) The eigenvalues are {—3,1,0} and the eigenvector(s) are

{=3,{0,-1,1}} {1,{1,1,0}} {0,{-3,—4,2}}
(b) The eigenvalues are {—2, 2,2} and the eigenvector(s) are
{-2,{1,0,1}} {2,{0,0,1}} {2,{1,1,0}}

(¢) The eigenvalues are {—2, —2,1} and the eigenvector(s) are

{-2,{-3,1,2}} {1,{-1,1,1}}
(d) The eigenvalues are {—3, —3, —3} and the eigenvector(s) are

{=3,{-1,0,1}} {-3,{-1,1,0}}
(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{_27 {_17 _17 1}}

86



ANSWERS (58):
(a) The eigenvalues are {2, —1,0} and the eigenvector(s) are

{2,{-1,1,0}} {-1,{1,-1,1}} {0,{3,-2,1}}
(b) The eigenvalues are {2,2,0} and the eigenvector(s) are
{2a{1>0a2}} {2>{1’2>0}} {07 {07_271}}

(¢) The eigenvalues are {3, —2, —2} and the eigenvector(s) are

{37{_1>0a1}} {_2>{_37_172}}
(d) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{-2,{-2,0,1}} {-2,{1,1,0}}
(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{_2’ {_L 17 0}}

ANSWERS (59):
(a) The eigenvalues are {—2,—1,0} and the eigenvector(s) are

{_2a{_1’071}} {—1,{—3,1,3}} {Oa{_1a1>2}}
(b) The eigenvalues are {2,2,1} and the eigenvector(s) are
{2,{0,0,1}} {2,{-1,1,0}} {1,{1,0,1}}
(c) The eigenvalues are {—1,1, 1} and the eigenvector(s) are
{-1,{2,1,2}} {1,{1,1,2}}
(d) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are
{—-2,{-1,0,1}} {-2,{1,1,0}}

(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{-2,{2,1,1}}

ANSWERS (60):
(a) The eigenvalues are {5,2,1} and the eigenvector(s) are

{5’{_1’171}} {27{_271a1}} {1,{—1,1,0}}
(b) The eigenvalues are {3, 3,2} and the eigenvector(s) are
{3’{_1’073}} {37 {4a 370}} {2a{1>1a0}}
c e eigenvalues are {—1,—1,0} and the eigenvector(s) are
The ei 1 1,—1,0} and the ei
{_17{1’070}} {07 {2’271}}

e eigenvalues are {—2, —2, —2} and the eigenvector(s) are

d) The ei 1 2, —2,—2} and the ei
{-2,{0,0,1}} {-2,{-1,1,0}}

(e) The eigenvalues are {—2, —2, —2} and the eigenvector(s) are

{_27 {27 17 2}}
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ANSWERS (G1):
(a) The eigenvalues are {—3, —1,0} and the eigenvector(s) are

{-3,{1,1,0}} {-1,{-1,-1,1}} {0,{0,—1,1}}
(b) The eigenvalues are {3, 3,1} and the eigenvector(s) are
{3,{0,-1,1}} {3,{1,0,0}} {1,{1,0,1}}
(¢) The eigenvalues are {2,1,1} and the eigenvector(s) are
{2,{-1,1,0}} {1,{1,0,1}}
(d) The eigenvalues are {—1,—1,—1} and the eigenvector(s) are
{-1,{0,1,1}} {-1,{1,0,0}}
(e) The eigenvalues are {—1, —1, —1} and the eigenvector(s) are
{-1,{1,0,1}}

ANSWERS (62):
(a) The eigenvalues are {—4,3,0} and the eigenvector(s) are

{-4,{1,0,1}} {3,{-1,1,1}} {0,{-1,1,0}}
(b) The eigenvalues are {3, 3,1} and the eigenvector(s) are
{3,{-1,0,1}} {3,{0,1,0}} {1,{-1,-1,2}}
(¢) The eigenvalues are {3, 3,2} and the eigenvector(s) are
{3,{—-1,-1,1}} {2,{1,1,0}}
(d) The eigenvalues are {—1,—1, —1} and the eigenvector(s) are
{-1,{0,0,1}} {-1,{2,1,0}}
(e) The eigenvalues are {1,1,1} and the eigenvector(s) are
{1,{0,0,1}}

ANSWERS (63):
(a) The eigenvalues are {3,1,0} and the eigenvector(s) are

{3,{-1,1,1}} {1,{-2,1,1}} {0,{-1,1,0}}
(b) The eigenvalues are {3, 3,2} and the eigenvector(s) are
{3,{0,0,1}} {3,{-1,2,0}} {2,{-1,1,2}}
(¢) The eigenvalues are {3,2,2} and the eigenvector(s) are
{3,{1,0,1}} {2,{1,-1,3}}
(d) The eigenvalues are {—1,—1,—1} and the eigenvector(s) are
{-1,{0,0,1}} {-1,{2,1,0}}
(e) The eigenvalues are {2,2,2} and the eigenvector(s) are

{27 {_17 07 2}}
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ANSWERS (64):
(a) The eigenvalues are {7,3,—1} and the eigenvector(s) are

{7.{-1,1,1}} {3,{—2,3,1}} {-1,{-1,1,0}}
(b) The eigenvalues are {—3, —3, —1} and the eigenvector(s) are
{-3,{0,-1,1}} {-3,{1,0,0}} {-1,{2,0,1}}
(¢) The eigenvalues are {2,2,—1} and the eigenvector(s) are
{2,{1,1,0}} {-1,{-2,-1,2}}
(d) The eigenvalues are {—1,—1,—1} and the eigenvector(s) are
{-1,{0,1,2}} {-1,{1,0,0}}
(e) The eigenvalues are {2,2,2} and the eigenvector(s) are
{2,{-1,0,2}}

ANSWERS (65):
(a) The eigenvalues are {5,2, —1} and the eigenvector(s) are

{5.{-1,1,1}} {2,{-2,3,1}} {-1,{-1,1,0}}
(b) The eigenvalues are {—3, —2, —2} and the eigenvector(s) are

{=3,{-1,1,1}} {-2,{-3,0,2}} {—2,{0,1,0}}
(¢) The eigenvalues are {—2, —2,1} and the eigenvector(s) are

{-2,{-3,1,2}} {1,{-1,1,1}}
(d) The eigenvalues are {1,1,1} and the eigenvector(s) are
{1,{0,0,1}} {1,{2,1,0}}

(e) The eigenvalues are {3,3,3} and the eigenvector(s) are

{3,{1,0,1}}
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