Recommended for Further Reading
 Pauli Matrices

A Summer Course given at University of Hyderabad
A. K. Kapoor
http://Ospace.org/users/kapoor
akkapoor@cmi.ac.in; akkhcu@gmail.com

Contents

We summarize some important properties of Pauli Matrices.

1. The three Pauli matrices are given by

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right) \quad\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

2. The Pauli matrices satisfy the commutation relations.

$$
\begin{equation*}
\left[\sigma_{i}, \sigma_{j}\right]=2 i \epsilon_{i j k} \sigma_{k} \tag{2}
\end{equation*}
$$

3. The square of each Pauli matrix is unity. So is the square of $\hat{n} \cdot \vec{\sigma}$ where \hat{n} is a unit vector.

$$
\begin{equation*}
\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2}=\hat{I} ; \quad \hat{n} \cdot \vec{\sigma}^{2}=\hat{I} \tag{3}
\end{equation*}
$$

4. Every Pauli matrix anticommutes with the other two Pauli matrices. There does not exist a nonzero 2×2 matrix which anticommutes with all the three Pauli matrices.
5. The above relations can be written in various different forms.

$$
\begin{align*}
{\left[\sigma_{i}, \sigma_{j}\right] } & =2 i \epsilon_{i j k} \sigma_{k} \tag{4}\\
\sigma_{j} \sigma_{k}+\sigma_{k} \sigma_{j} & =2 \delta_{j k} \tag{5}
\end{align*}
$$

6. The above two relations imply that

$$
\begin{equation*}
\sigma_{j} \sigma_{k}=\delta_{j k}+i \epsilon_{j k \ell} \sigma_{\ell} \tag{6}
\end{equation*}
$$

7. The above statements are can be rewritten as
(a) $[\vec{a} \cdot \vec{\sigma}, \vec{b} \cdot \vec{\sigma}]=2 i(\vec{a} \times \vec{b}) \cdot \vec{\sigma}$
(b) $(\vec{a} \cdot \vec{\sigma})^{2}=|\vec{a}|^{2}$
(c) $(\vec{a} \cdot \vec{\sigma})(\vec{b} \cdot \vec{\sigma})+(\vec{b} \cdot \vec{\sigma})(\vec{a} \cdot \vec{\sigma})=2(\vec{a} \cdot \vec{b}) \hat{I}$
(d) $(\vec{a} \cdot \vec{\sigma})(\vec{b} \cdot \vec{\sigma})=(\vec{a} \cdot \vec{b}) \hat{I}+i(\vec{a} \times \vec{b}) \cdot \vec{\sigma}$
where \vec{a}, \vec{b} are two arbitrary numerical vectors.
8. The trace of each of the three matrices is zero. If we use the notation $\sigma_{0}=\hat{I}$ we have the relation, we can write

$$
\begin{equation*}
\operatorname{Tr}\left(\sigma_{\mu} \sigma_{\nu}\right)=2 \delta_{\mu \nu} \tag{7}
\end{equation*}
$$

9. The above identity can be used to prove linear independence of Pauli matrices. The four matrices $\sigma_{\mu}, \mu=0, \ldots, 3$ form a basis in the complex vector space of all 2×2 matrices.
10. Let S be complex 2×2 matrix which is expanded in terms of the matrices σ_{μ}

$$
\begin{equation*}
S=\sum_{\mu=0}^{3} C_{\mu} \sigma_{\mu} \tag{8}
\end{equation*}
$$

The expansion coefficients are given by

$$
\begin{equation*}
C_{\mu}=\frac{1}{2} \operatorname{Tr}\left(S \sigma_{\mu}\right) \tag{9}
\end{equation*}
$$

11. The completeness relation for the Pauli matrices is contained in the identity

$$
\begin{equation*}
\sum_{a}\left(\sigma^{a}\right)_{i j}\left(\sigma^{a}\right)_{k l}=2 \delta_{i l} \delta_{j k}-\delta_{i j} \delta k l . \tag{10}
\end{equation*}
$$

12. An important identity satisfied by the Pauli matrices is

$$
\begin{equation*}
\exp (i \vec{\alpha} \cdot \vec{\sigma})=\cos |\vec{\alpha}|+i \vec{\alpha} \cdot \sigma \sin |\vec{\alpha}| \tag{11}
\end{equation*}
$$

where $\vec{\alpha}$ is a vector and

$$
\begin{equation*}
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right), \quad|\vec{\alpha}|=\sqrt{\alpha_{1}^{2}+\alpha 2^{2}+\alpha_{2}^{2}} \tag{12}
\end{equation*}
$$

Pauli-Matrices.pdf Ver 17.x LastUpDated: June 4, 2018 Created: April 2017

> http://0space.org/users/kapoor No Warranty, Implied or Otherwise License: Creative Commons Proofs

