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§1 Quantization of Schrodinger equation

§1 Second Quantisation of Schrodinger equation

We will recall the main steps and features of second quantisation of non-relativistic Schrodinger

equation. The non-relativistic Schrodinger equation for a single point particle moving in a

potential V (~x) is given by

i~
∂ψ(~x, t)

∂t
= −

~
2

2m
∇2ψ(~x, t) + V (~x)ψ(~x, t). (1)

with Lagrangian given by

L[ψ, ∂kψ, ψ̇] =

∫
L d3x (2)

Lagrangian formulation The quantum state of a particle at any time is specified by the

wave function at that time. In other words by the values of ψ(~x) for different space time points

~x. Therefore, we may regard the system as having infinite number of generalised coordinates

ψ(~x), one for each point in space and seek to quantise the Schrodinger equation again. We shal

follow the canonical quantisation scheme for this purpose.

The Lagrangian density giving rise to the Schrodinger equation as Euler Lagrange equation

is

L = i~
∂ψ∗

∂t
ψ − ψ∗

(
~
2

2m
(∇ψ)∗(∇ψ) + V (~x)ψ.

)
(3)

The Euler Lagrange equation is
δL

δψ(~x, t)
= 0 (4)

The equation of motion, in terms of the Lagrangian density, is seen to be

∂0

( ∂L

∂(∂0ψ)

)
+

∑

k

∂k

( ∂L

∂(∂kψ)

)
−
∂L

∂ψ
= 0. (5)

It is easily checked that (5) leads to the Schrodinger equation when the Lagrangian density is

given by Eq.(3) is used.
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Canonical momentum For canonical quantisation, we compute the canonical momentum

π(~x, t) conjugate to ψ(~x, t) using the definition

π(~x, t) =
∂L

∂(ψ̇(~x, t)
. (6)

and get

π(~x, t) = ψ∗(~x, t). (7)

Canonical quantisation The act of quantisation consists in assuming that ψ(~x, t), π(~x, t) are

operators obeying equal time commutation relations (ETCR)

[
ψ(~x, t), π(~y, t)

]
= i~δ(3)(~x− ~y), (8)

[
ψ(~x, t), ψ(~y, t)

]
= 0,

[
π(~x, t), π(~y, t)

]
= 0. (9)

This assumption is very powerful and contains all information about the second quantised

Schrodinger theory.

§2 Building up the Hilbert space

The field operator ψ(~x, t) does not have any physical interpretation in the second quantized

theory. The interpretation will become clear only after a certain amount of mathematical de-

velopments in the second quantised theory.

We would like to learn a little about the description of states, and about the Hilbert space

of all possible states, of the second quantised theory.

To arrive at the Hilbert space of states we first expand the field operator as

ψ(~x, t) =
∑

n

an(t)un(~x). (10)

Here un(~x) are the eigenfunction of the Hamiltonian operator

Ĥ = −
~
2

2m
∇2 + V (~x). (11)

in the first quantised theory. It has been assumed that all the eigenvalues are discrete and that

the eigenfunctions un are normalized to unity.
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Eq.(10) can be inverted and we will have

an(t) =

∫
dxun(~x)ψ(~x, t). (12)

Also its adjoint equation takes the form

a†n(t) =

∫
dxun(~x)ψ

†(~x, t). (13)

With π(~x, t) given by (7), the canonical commutation relation (8) takes the form

[
ψ(~x, t), ψ∗(~y, t)

]
= i~δ(3)(~x− ~y). (14)

This can be used to find the commutation relation satisfied by the operators ananda
†
n. It is now

straightforward to verify the following commutation relations.

[am, a
†
n] = δmn, (15)

[am, an] = 0, [a†m, a
†
n] = 0, (16)

wherem,n = 1, 2, . . .. Next we define the operators Nk = a
†
kak. These are commuting hermitian

operators [
Nk, Nℓ

]
= 0, for all k, ℓ. (17)

It will be noticed that the operators ak, a
†
k, Nk, for each k, are like raising, lowering and number

operators, a, a†, N = a†a, for the harmonic oscillator problem, and satisfy the same commutation

relations. Therefore, we conclude that the eignevalues of Nk are nonnegative integers a and

corresponding ak, a
†
k act like raising and lowering operators.for the eignevalues of Nk.

Thus we have a set of commuting hermitian operators {Nk|k = 1, 2, . . .} having nonnegative

integers as eignevalues. They will therefore have simultaneous eigenvectors which will form a

complete orthonormal set. The Hilbert space of states will be linear span of this orthonormal

set of simultaneous eignevectors. These eigenvectors will be denoted as {|ν1, ν2, ...〉}, so that

Nk|ν1, ν2, ...〉 = νk|ν1, ν2, ...〉. (18)

and N |ν1, ν2, ...〉 =
∑

k

νk|ν1, ν2, ...〉. (19)

where N =
∑

kNk is the sum of all number operators.
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Physical Interpretation

In order to learn about the physical interpretation we look at the observables of the second

quantised theory. The Hamiltonian can be found using

H =

∫
dx

(
π(~x, t)

∂ψ(~x, t)

∂t
−L

)
(20)

The Hamiltonian when expressed in terms of ak, a
†
k takes the form

H =

∫
d3x

(
−

~
2

2m
|∇ψ|2 + ψ∗(~x, t)V (~x)ψ(~x, t)

)
(21)

=
∑

k

EkNk. (22)

The lowest energy state corresponds to zero eignevalue for operators Nk for each k = 1, 2, ...

Assuming this state to be unique, and denoting it by |0〉, we have the property.

Nk|0〉 = 0 (23)

and therefore the energy of this state turns out to be zero. This state will be the ground state.

Next consider the state |0, 0, .., νj , ..〉 which corresponds to eignevalue νj for a particular

number operator Nj and zero for all other operators Nk, k 6= j. This state will result from

repeated action of a†j on the state |0〉:

|0, 0, .., νj , ..〉 = Cj

(
a
†
j

)νj |0〉 (24)

where Cj is a constant, to be fixed by normalisation. This state has energy νjEj as is apparent

from Eq.(22).

The state |0, 0, .., νj , ..〉 has energy νjEj ≡ E and the action of aj on this state results in a

state with decreased energy E − Ej.

Also if |E〉 is a state with total energy E then a†j |E〉 is a state with definite energy E + Ej .

This suggests the following interpretation.

• The eigenvalues of operators Nk gives the number of particles in level Ek.

• State |ν1, ν2, ...〉 corresponds to ν1, ν2, .., νj , .. particles in levels E1, E2, ..., Ej , ....

5



• The state |0〉 represents a state with zero energy and has no particle. This state is known

as the vacuum state.

• The operators a†k, ak, respectively, create and annihilate a particle in kth) energy level Ek.

level.

• The total number of particles, N =
∑

kNk, is a constant of motion. In fact in absence of

any other term in the Lagrangian each operator Nk is a constant of motion.

§3 Fock Space

It has been noted in the above that the Hilbert space in the second quantised Schrodinger theory

consists

(i) a state with no particle |0〉;

(ii) states {|~q〉} of a single particle with all possible values of momenta ~q; (iii) states {|~q〉, ~p} of

two particles having all possible values of momenta ~q, ~p);

(iv) and so on Mathematically, the Hilbert space consists of a direct sum

H = H0 ⊕H1 ⊕H2 ⊕ ·

of several Hilbert spaces,HN , of states with N particles with N taking values 0, 1, 2, . . .. The

each Hilbert spaces HcaN , of states with with N particles, is symmetric tensor product

HN = H⊗H⊗ · · · ⊗ H

of N copies of Hilbert space H of single particle states.

The symmetric tensor product of Hilbert spaces,Hn, of one particle states, is the same as

that appears in the wave mechanics of identical bosons, described by symmetrised Schrodinger

wave functions.

If it is desired that second quantised Schrodinger theory describe an assembly of identical

fermions, the canonical commutation relations, in Eq.(8), must be replaced by anti-commutation

relations.

[
ψ(~x, t), π(~y, t)

]
+

= i~δ(3)(~x− ~y), (25)
[
ψ(~x, t), ψ(~y, t)

]
+
= 0,

[
π(~x, t), π(~y, t)

]
+
= 0. (26)
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In this case each of the Hilbert spaces HN , N ≥ 2 will be antisyemmtric tensor product of Hilbert

space of one particle states.

The mathematical construction of the space of all states in the second qunatized theory is

know as Fock space. You can learn more about it from the the references given at the end.

Remember that in the nonrelativistic description particles cannot be created or destroyed.

The total number N of each type of particles in a system remains constant in time. The quantum

mechanical description of such a system in the second quantised theory is completely equivalent

to that in the Schrodinger wave mechanics.

In the Schrodinger wave mechanics, the (anti) symmetrisation of total wave function is ad-

ditional postulate. In the second quantised theory, it comes out automatically as a consequence

of canonical (anti) commutation relations. In second quantised, relativistic theory, the spin

statistics connection — use of commutators for bosons, and anticommutators for fermions —

is a consequence very general assumptions such as Lorentz invariance, positive definiteness of

Hamiltonian and was first formulated and proved by Pauli and Luders in paper in 1940 and has

been later proved by others at different levels of mathematical rigour.

§4 Relativistic Wave Mechanics

Klein Gordon equation Non relativistic Schrodinger equation does not explain all the fine

details of H atom spectrum. The fine structure is explained by taking relativistic effects into

account. Simplest such theory is based on the relativistic energy momentum relation E2 =

~p2c2 + m2c4. The usual prescription ~p → ~̂p = −i~∇ and time evolution governed by the

Hamiltonian

i~
∂φ(~x, t))

∂t
= Ĥφ(~x, t) (27)

gives us the equation

− ~
2∂

2φ(~x, t)

∂t2
= −~2c2∇2φ(~x, t) +m2c4φ(~x, t) (28)

This equation was originally written by Schrodinger himself. He abandoned its predictions for

the fine structure did not agree with the experiments. Later he realized that in the non relativis-

tic limit the H atom levels agreed with the Balmer formula.The equation (41) was not successful

in describing relativistic quantum mechanics of a point particle.
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What are the problems in using Klein Gordon equation as

relativistic quantum mechanical wave equation? Where can

we find a brief historical account?

Klein Gordon equation was revived as second quantized relativistic field equation for scalar

particles.

We will briefly discuss the relativistic quantum mechanics of a single point particle.We will

use natural units and set ~ = c = 1. The Klein Gordon equation then takes the formula

(2 +m2)φ(~x, t) = 0 (29)

where 2 is given by

2 =
∂2

∂t2
−∇2 (30)

and is known as de Alembertian operator. This equation describes relativistic quantum mechan-

ics of a point particle.

Plane wave solutions The plane wave solutions are eigenfunctions of the momentum opera-

tors ~p = −i~∇ and describe a relativistic free particle with definite momentum. The plane wave

solutions of Klein Gordon equation are given by

fq(~x, t) = Nei~q·~x−iωqt (31)

where ω2
q = ~q2 + m2 is the relativistic energy momentum relation. In natural units ~ = 1 so

E = ~ω = ω. It may be noted that there are two solutions corresponding to the two square

roots ω~q = ±
√
~q 2 +m2, the positive and negative energy solutions. The equation for complex

conjugate φ∗(~x, t) is

(2 +m2)φ∗(~x, t) = 0 (32)

Physical interpretation of Klein Gordon wave function

In order to derive interpretation of the Klein Gordon wave function, we will follow the time

honoured procedure of using the equation of continuity.
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In order to derive the equation of continuity, we multiply (29) by φ∗(~x, t) and (32) by

φ(vecx, t) and subtract to get

φ∗(~x, t)
{ d2

dt2
φ(~x, t)−∇2φ(~x, t)

}
−

{ d2

dt2
φ(~x, t)−∇2φ(~x, t)

}
φ∗(~x, t) (33)

The above equation can be cast in the formula

∂0

{
φ ∗ (~x, t)

←→
∂0 φ(~x, t)

}
−∇

{
φ ∗ (~x, t)

←→
∇ φ(~x, t)

}
= 0. (34)

We have he continuity equation

∂ρ(~x, t)

∂t
+∇ ·~j(~x, t) = 0, (35)

where we have defined

ρ(~x, t) = iφ ∗ (~x, t)
←→
∂ 0 φ(~x, t) (36)

and ~j(~x, t) = −iφ ∗ (~x, t)
←→
∇ φ(~x, t). (37)

Question: Why do we have a factor of i in the expressions for

probability density ρ(~x, t) and ~j(~x, t)?

Ans: A factor of i is included so that the two

quantities may be real.

The equation of continuity implies that the total probability
∫
d3xρ(~x, t) = independent of time. (38)

Therefore, we can normalise the solutions by choosing this constant to be one. The plane wave

solutions will have to be normalized to Dirac delta function

i

∫
dxf~q(~x, t)

←→
∂0f~p(~x, t) = 2ωqδ(~q − ~p). (39)

Note that the left hand side is zeroth component of four vector current jµ = iφ∗(x)
←→
∂µ φ(x). A

factor of 2ωq has been included in the normalisation so as to make the normalisation Lorentz

invariant.
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Negative energy solutions The presence of negative energy solutions gives rise to problems.

Very briefly we mention two difficulties.

The expression for probability density is not positive definite. This is easily seen by com-

puting rho for the negative energy plane wave solutions.

Note that for a particle with momentum~q having momentum ~q can have arbitrary negative

energy (= −
√
~q2 +m2), with no lower limit.

Therefore, in presence of interactions, a particle can radiate energy continuously by making

transitions to negative energy states. Since energy has no lower bound, this process will be a

never ending process.

Dirac attempted to solve these problems by proposing an equation linear in space and time

derivatives. Dirac theory successfully predicted several observations such as spin, magnetic

moment and fine structure of H atom. With negative energy states assumed to be all filled,

existence of positrons was abrilliant prediction. However, problems of a consistent interpretation,

as relativistic quantum mechanics of a point particle, remained unresolved.

It may be emphasized here that several works starting with work of Sudarshan showed that a

relativistic theory of a system with finite degrees of freedom has to be free theory. Thus systems

with infinite number of degrees of freedom are essential to have interacting relativistic theory.

The second quantisation of Klein Gordon equation and Dirac equation, for example, provides

a framework in which a resolution of problems and a consistent interpretation was possible. The

quantum field theory of electrons and photons and, later, unified electro-weak model have been

brilliantly confirmed by the experiments.

We will discuss the second quantisation of Klein Gordon and Dirac equation in later lectures.

In this lecture, we briefly recall the main points of second quantisation of the Schrodinger theory

that was covered in a course last semester.
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§2 Quantisation of Klein Gordon Equation

§1 Important Remarks

We have attempted to follow

Gasiorowicz S., Elementary Particle Physics, John Wiley and Sons New York (1966)

as closely as possible taking what can be done in the course keeping the announced goals in

mind.

We will refer to portions from Gasiorowicz which are scanned and reproduced. It is strongly

recommended that the reader go through the original book as this course progress and try to

assimilate what has been left out.

We do not make any attempt, whatsoever, to ’modify’ or ’improve’ what is available in the

book.

Frequently, the presentation will be interrupted by the teacher’s commentary and some Gray

Boxes containing short comments, or questions etc. These interruptions are meant to serve

two purposes. The purpose is to relate contents from Gasiorowicz to what the students already

know students, and to present it as smoothly and as coherently as possible. The Gray Boxes

are meant to encourage the students to ponder over the questions and comments in the Gray

Boxes and discuss the same among themselves.

Further detailed discussion of each of these Gray Boxes will be provided separately.
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§2 Notation
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§3 Relativistic quantum mechanics

The relativistic energy momentum relation is

E2 = p2c2 +m2c4 (40)

We will use natural units ~ = 1.c = 1. Sometimes I may retain ~ factors. TO quantize we use

the correspondence

~p −→ −i~∇, i~
∂φ(~x, t)

∂t
= Hφ(~x, t) (41)

Eq.(40) and Eq.(41) imply that the wave function obeys

~
2
( d2
dt2
−∇2

)
φ(~x, t) +m2c4φ(~x, t) = 0. (42)

Due to appearance of square root in the Hamiltonian, the equation with second order time

derivative. has been written down.

This equation, now known as Klein Gordon equation, was originally, Schrodinger derived by

Schrodinger. He discarded it when he found that predicted H atom energy levels do not agree

with experimental data for H atom. Later he realised that in nonrelativistic limit the result

agreed with the Balmer formula.

What are the problems in using Klein Gordon equation as

relativistic quantum mechanical wave equation? Where can

we find a brief historical account?
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It was rediscovered and used for quantum field theory of bosons by Klein and Gordon. The

essential new idea here is that the states of a relativistic particle in quantum mechanics are

described by φ(~x, t) and the wave function φ(~x, t) is reinterpreted as a set of generalised, one

for each space point. The Kelin Gordon equation is now treated as describing a classical wave

field, just like Maxwell’s equations describe the electromagnetic field.

The rules of canonical quantisation procedure can now be applied by reinterpreting Klein

Gordon equation as field equation . Its second quantisation led to filed theory of scalar (spin

zero) bosons.

The same reinterpretation and second quantisation has been carried out for Dirac equation

and the Schrodinger equation even though latter led to a consistent theory.
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Over to Gasiorowicz

Scan-3
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Scan-4
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Scan-5 Take a break

Why can we not continue using the same normalisation as in

the Schrodinger case? What is the need to derive equation

of continuity again?

17



§4 Recall canonical quantisation

When we think of quantisation of system, we already have in mind a classical description of the

system in mind. This may not always be possible, for example, interacting spins is one such

system.

In canonical quantisation the starting point is the Lagrangian formulation of dynamics. A

state of the system is completely described by a set of coordinate {q1, q2, . . .} and generalised

velocities,{q̇1, q̇2, . . .}, The dynamics of the system is governed by a Lagrangian, L(q, q̇), which

is a function of the generalised coordinates and velocities.

A transition to the Hamltonian form of dynamics is made by introducing the canonical

momenta,pi, conjugate to the generalised coordinates defined by

pk =
∂

∂L
q̇k (43)

The canonical quantisation consists in assuming that the genralised coordinates and mo-

menta are to be treated as hermitian operators is some Hilbert state satisfying the canonical

commutation relations [
qi, pj

]
= i~δij . (44)

The states of the system are described vectors in the Hilbert space.

All this is gives us only a mathematical frame work.

Where is the physical interpretation? What is the

Hilbert state? How it gets related to the experimental

observations.

A complete discussion will require going details of postulates of quantum theory. Instead of

digressing to that, here we will describe the process in a form that is suitable for in our present

context.

The next step in discussion of quantised theory is to find a complete set of commuting

observables constructed out of coordinates and momenta gives a complete orthonormal set. The

linear span of this complete othronormal set is the Hilbert space of quantum states.

At this stage it is important to realise that there is no unique commuting set of on observables.

Different sets lead to different representaions. To fix our idea in quantum mechanics of a point

particle two such sets are {~r} and {~p}. the position operators and momentum operators. These

lead to two different representations known as the coordinate and the momentum representation.
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The states of simultaneous eigenvectors have a useful physical interpretation. Each dy-

namical variable in the commuuting set has a definite value in the states corresponding to the

simultaneous eigenvectors.

For any other state |Ψ〉, the probability amplitudes of the dynamical variables having dif-

ferent sets of values is obtained by expanding of the state vectors |Ψ〉 in terms of the basis of

simultaneous eigenvectors and noting down the coefficients.

Thus once we know the commuting set of observations, a Hilbert space and physical inter-

pretation can be built up following the procedure outlined above.

§5 Over to Gasiorowicz

We start with the canonical commutation relations. The basic equations of canonical quantiza-

tion procedure are as follows.
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§6 Number Operators

In quantum field theory the field operator does not have a direct physical interpretation. Con-

nection with physical quantities is arrived at by expanding the field operators in terms of plane

wave solutions. The expansion coefficients A,A†, B,B† (see (1.37) below) will be operators. The

commutations relations for these operators will be obtained by first writing them in terms of

φ(x), ∂0φ(x) etc (see 1.38);next we note make use of ETCR (1.16) remembering that (1.13) gives

∂0φ
∗(x) = π0(x). Now go through the steps presented below from Gasiorowicz. The equations

(1.39) and (1.40) give the final results for all noncommuting operators.

22



Verify equations (1.38) to (1.40) given in the book by

Gasiorowicz.
Scan-9

Verify expression (1.47) for the total Hamiltonian given

by Gasiorowicz.
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Scan-10
Number operators and the Hilbert space

In the problem of a single quantum harmonic oscillator the operators a, a† and N = a†a are

defined which obey the commutation relations

[a, a†] = 1, [N, a] = −a, [N, a†] = a†. (45)
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The eigenvalues of N turned out to be all nonnegative integers 0, 1, 2, . . . and the operators a, a†

act as lowering and raising operators for the number operator.

Here we have a similar situation. Number operatorsN(q), N(q′) are hermitian andN(q), N(q′)

commute pairwise if q 6= q′. Therefore these operators form a commuting set and have simul-

taneous eigenvectors which form a complete orthonormal set. Their linear span will give the

Hilbert space. There exists a state called itvacuum and denoted by,|0〉 such that all all the

number operators which is eigenvector of all number operators with zero eigenvalue.

N(~q)|0〉 = 0, for all~q. (46)

§7 Physical interpretation

Let us recall some results from second quantised Schrodinger field theory. The Schrodinger wave

function was treated as classical field and was expanded in terms of eigenfunctions un(~x)

ψ(~x, t) =
∑

n

anun(~x)e
−iEnt/~ (47)

of the total Hamiltonian H = p2

2m + V (~r)

The canonical quantisation led to the following commutation relations for operators ak, a
†
k and Nk =

a
†
kak. [

ak, a
†
m

]
= δkm,

[
Nk, ak

]
= −ak,

[
Nk, a

†
k

]
= a

†
k (48)

There is a close resemblance between the above equations and the corresponding equations for

the scalar field. So we can carry over the interpretation of the Schrodinger theory to the Klein

Gordon case. The only way the equations for the Klein Gordon case differ from our discussion

of quantised Schrodinger field is that the discrete index the operators A(q), B(q) and N(q) in

scalar field case depend on a continuous index.

So the interpretation of the number operators N(q) is that it gives the number density, i.e.

the number of particles in range ~q and ~q + d~q equals N(~q)d~q.

So read on Gasiorowicz where all this has and more has been explained.
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§8 Back to Gasiorowicz
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One can also show that the Klein Gordon equation describes a zero spin particle. This is

done by showing that under rotations the wave function of one particle at rest does not change

hence its spin angular momentum is zero. For more detail we refer you to the original book by

Gasiorowicz.

This completes our discussion of physical interpretation of quantised Klein Gordon field.
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