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81 Quantization of Schrodinger equation

81 Second Quantisation of Schrodinger equation

We will recall the main steps and features of second quantisation of non-relativistic Schrodinger
equation. The non-relativistic Schrodinger equation for a single point particle moving in a

potential V(&) is given by

.’Z" 2
in?P D g ) 4 v@pe . (1)

with Lagrangian given by
L0 ) = [ 2 ¢

Lagrangian formulation The quantum state of a particle at any time is specified by the
wave function at that time. In other words by the values of ¥ (Z) for different space time points
Z. Therefore, we may regard the system as having infinite number of generalised coordinates
(&), one for each point in space and seek to quantise the Schrodinger equation again. We shal
follow the canonical quantisation scheme for this purpose.

The Lagrangian density giving rise to the Schrodinger equation as Euler Lagrange equation

is

oyY* -
2=ty i (v (ve) + Vi) 3)
The Euler Lagrange equation is
oL (@)
0p(E,t)
The equation of motion, in terms of the Lagrangian density, is seen to be

80( aw) Za’“( ak¢> %12;_0' ©)

It is easily checked that (Bl leads to the Schrodinger equation when the Lagrangian density is

given by Eq.(3l) is used.



Canonical momentum For canonical quantisation, we compute the canonical momentum

7(Z,t) conjugate to (&, t) using the definition

L. 0Z
w(Z,t) = 78(@/}(5,t)' (6)
and get
m(Z,t) = " (Z,1). (7)

Canonical quantisation The act of quantisation consists in assuming that (%, t), 7(Z,t) are

operators obeying equal time commutation relations (ETCR)

[¢(f,t),ﬂ(ﬂ,t>] = Zhé(g)(f—g), (8)
[V(@,1),4(F,t)] =0, [n(Z,t),7(g,t)] = 0. (9)

This assumption is very powerful and contains all information about the second quantised

Schrodinger theory.

82 Building up the Hilbert space

The field operator ¥ (Z,t) does not have any physical interpretation in the second quantized
theory. The interpretation will become clear only after a certain amount of mathematical de-
velopments in the second quantised theory.

We would like to learn a little about the description of states, and about the Hilbert space
of all possible states, of the second quantised theory.

To arrive at the Hilbert space of states we first expand the field operator as
¢(f’t) = Zan(t)un(f)‘ (10)
n

Here u, (Z) are the eigenfunction of the Hamiltonian operator

~ h2
H=——V?+V(). (11)

2m

in the first quantised theory. It has been assumed that all the eigenvalues are discrete and that

the eigenfunctions u,, are normalized to unity.



Eq.([I0) can be inverted and we will have
an(t) = / Ay (F)(, 1), (12)
Also its adjoint equation takes the form
ol (8) = / (B0 (7, 1). (13)
With 7(Z,t) given by (), the canonical commutation relation (8]) takes the form
(0@, 1), 0" (5,0)] = i) (7 — 7). (14)

This can be used to find the commutation relation satisfied by the operators anandajl. It is now

straightforward to verify the following commutation relations.

[ama CLL] = Omn, (15)

[amu an] =0, [ajn’ aj.l] =0, (16)

where m,n = 1,2,.... Next we define the operators N, = azak. These are commuting hermitian
operators

[N, Ne| =0, for all k, . (17)

It will be noticed that the operators ay, az, Ny, for each k, are like raising, lowering and number
operators, a,a’, N = a'a, for the harmonic oscillator problem, and satisfy the same commutation
relations. Therefore, we conclude that the eignevalues of N, are nonnegative integers a and
corresponding ay, aL act like raising and lowering operators.for the eignevalues of V.

Thus we have a set of commuting hermitian operators { Ny|k = 1,2, ...} having nonnegative
integers as eignevalues. They will therefore have simultaneous eigenvectors which will form a
complete orthonormal set. The Hilbert space of states will be linear span of this orthonormal

set of simultaneous eignevectors. These eigenvectors will be denoted as {|v1, s, ...)}, so that

Nilvi,va,...) = vglvr, v, ... (18)
and N|vi,va,...) = Zyklyl,l/g,...>. (19)
k

where N = ), N}, is the sum of all number operators.
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Physical Interpretation

In order to learn about the physical interpretation we look at the observables of the second

quantised theory. The Hamiltonian can be found using

H— / i (w(f,t)% - 2) (20)

The Hamiltonian when expressed in terms of ay, az takes the form

2
o= [ (- Vel v @0V @) 21)
= Y EN. (22)
k

The lowest energy state corresponds to zero eignevalue for operators Ny for each k£ = 1,2, ...

Assuming this state to be unique, and denoting it by |0), we have the property.
N[0) =0 (23)

and therefore the energy of this state turns out to be zero. This state will be the ground state.
Next consider the state |0,0,..,7;,..) which corresponds to eignevalue v; for a particular
number operator N; and zero for all other operators Nj,k # j. This state will result from

repeated action of a;- on the state |0):
10,0, ..,v5,..) = Cj(al)"|0) (24)

where Cj is a constant, to be fixed by normalisation. This state has energy v;E; as is apparent

from Eq.(22]).

The state |0,0,..,v},..) has energy v;F; = E and the action of a; on this state results in a
state with decreased energy E — Ej.

Also if |E) is a state with total energy E then a}]E) is a state with definite energy F + Ej.

This suggests the following interpretation.
e The eigenvalues of operators N gives the number of particles in level Fj.

e State |11, 14, ...) corresponds to vy, s, .., vj, .. particles in levels Eq, Es, ..., Ej, ...



e The state |0) represents a state with zero energy and has no particle. This state is known

as the vacuum state.

e The operators a};, ay, respectively, create and annihilate a particle in k") energy level Ej.

level.

e The total number of particles, N =), Ny, is a constant of motion. In fact in absence of

any other term in the Lagrangian each operator INj is a constant of motion.

83 Fock Space

It has been noted in the above that the Hilbert space in the second quantised Schrodinger theory
consists

(i) a state with no particle |0);

(ii) states {|q)} of a single particle with all possible values of momenta ¢; (iii) states {|7),p} of
two particles having all possible values of momenta ¢, p);

(iv) and so on Mathematically, the Hilbert space consists of a direct sum
H=HoDH1 D HP-

of several Hilbert spaces,H y, of states with N particles with N taking values 0,1,2,.... The

each Hilbert spaces Hcay, of states with with N particles, is symmetric tensor product
HN=HOH® ---QH

of N copies of Hilbert space H of single particle states.

The symmetric tensor product of Hilbert spaces,H,,, of one particle states, is the same as
that appears in the wave mechanics of identical bosons, described by symmetrised Schrodinger
wave functions.

If it is desired that second quantised Schrodinger theory describe an assembly of identical
fermions, the canonical commutation relations, in Eq.(8]), must be replaced by anti-commutation

relations.

[@/)(f, t)? W(gv t)] + = zh5(3) (f - g)v (25)
[w(fv t)a¢(27» t)]+ =0, [W(f7t)7ﬂ(gv t)]+ =0. (26)



In this case each of the Hilbert spaces H, N > 2 will be antisyemmtric tensor product of Hilbert
space of one particle states.

The mathematical construction of the space of all states in the second qunatized theory is
know as Fock space. You can learn more about it from the the references given at the end.

Remember that in the nonrelativistic description particles cannot be created or destroyed.
The total number N of each type of particles in a system remains constant in time. The quantum
mechanical description of such a system in the second quantised theory is completely equivalent
to that in the Schrodinger wave mechanics.

In the Schrodinger wave mechanics, the (anti) symmetrisation of total wave function is ad-
ditional postulate. In the second quantised theory, it comes out automatically as a consequence
of canonical (anti) commutation relations. In second quantised, relativistic theory, the spin
statistics connection — use of commutators for bosons, and anticommutators for fermions —
is a consequence very general assumptions such as Lorentz invariance, positive definiteness of
Hamiltonian and was first formulated and proved by Pauli and Luders in paper in 1940 and has

been later proved by others at different levels of mathematical rigour.

84 Relativistic Wave Mechanics

Klein Gordon equation Non relativistic Schrodinger equation does not explain all the fine
details of H atom spectrum. The fine structure is explained by taking relativistic effects into

account. Simplest such theory is based on the relativistic energy momentum relation E? =

P22 + m2¢*. The usual prescription p — ﬁ’ = —thV and time evolution governed by the
Hamiltonian .
in20&:) Ho(Z,t) (27)
ot
gives us the equation
—h % = —W?AV2(T,t) + micto(i,t) (28)

This equation was originally written by Schrodinger himself. He abandoned its predictions for
the fine structure did not agree with the experiments. Later he realized that in the non relativis-
tic limit the H atom levels agreed with the Balmer formula.The equation (4I]) was not successful

in describing relativistic quantum mechanics of a point particle.



What are the problems in using Klein Gordon equation as
relativistic quantum mechanical wave equation? Where can
we find a brief historical account?

Klein Gordon equation was revived as second quantized relativistic field equation for scalar
particles.
We will briefly discuss the relativistic quantum mechanics of a single point particle.We will

use natural units and set h = ¢ = 1. The Klein Gordon equation then takes the formula

(O 4+ m?)p(F,t) =0 (29)
where O is given by
0? 9
0= i \Y (30)

and is known as de Alembertian operator. This equation describes relativistic quantum mechan-

ics of a point particle.

Plane wave solutions The plane wave solutions are eigenfunctions of the momentum opera-
tors p'= —ihAV and describe a relativistic free particle with definite momentum. The plane wave

solutions of Klein Gordon equation are given by

fo(Z, 1) = NeldTiwat (31)

2
q

F = hw = w. It may be noted that there are two solutions corresponding to the two square

where w? = ¢ + m? is the relativistic energy momentum relation. In natural units 7 = 1 so

roots wy = £1/¢2 + m?, the positive and negative energy solutions. The equation for complex

conjugate ¢*(Z,t) is
(O +m?)¢*(#,t) = 0 (32)

Physical interpretation of Klein Gordon wave function
In order to derive interpretation of the Klein Gordon wave function, we will follow the time

honoured procedure of using the equation of continuity.



In order to derive the equation of continuity, we multiply (29) by ¢*(Z,t) and (B2) by

¢(vecr,t) and subtract to get
d? d?
o"(@.0{ 503, t) = V2(#,0) } — { Z56(3.1) - V26(@,1) 6" (3.1)
The above equation can be cast in the formula
{0+ @0 o0} - v{s+ @0 To@n} =o.

We have he continuity equation

8p(f,t) = _
5 +V-j(@t)=0,
where we have defined
o . o N o
p(l‘,t) = ’L¢*(l‘,t) 80¢(1‘,t)
and ;(fvt) = _id)*(f?t) o(Z, )

Question: Why do we have a factor of © in the expressions for
probability density p(Z,t) and j(Z,t)?

Ans: A factor of ¢ is included so that the two
quantities may be real.

The equation of continuity implies that the total probability

/dgxp(a_:', t) = independent of time.

(33)

(34)

(38)

Therefore, we can normalise the solutions by choosing this constant to be one. The plane wave

solutions will have to be normalized to Dirac delta function

i / & (7)o A7, 1) = 2wgd(T — P).

(39)

Aypd
Note that the left hand side is zeroth component of four vector current j, = i¢*(z) 9, ¢(z). A

factor of 2wq has been included in the normalisation so as to make the normalisation Lorentz

invariant.



Negative energy solutions The presence of negative energy solutions gives rise to problems.
Very briefly we mention two difficulties.

The expression for probability density is not positive definite. This is easily seen by com-
puting rho for the negative energy plane wave solutions.

Note that for a particle with momentumg having momentum ¢ can have arbitrary negative
energy (= —/@ + m?2), with no lower limit.

Therefore, in presence of interactions, a particle can radiate energy continuously by making
transitions to negative energy states. Since energy has no lower bound, this process will be a
never ending process.

Dirac attempted to solve these problems by proposing an equation linear in space and time
derivatives. Dirac theory successfully predicted several observations such as spin, magnetic
moment and fine structure of H atom. With negative energy states assumed to be all filled,
existence of positrons was abrilliant prediction. However, problems of a consistent interpretation,
as relativistic quantum mechanics of a point particle, remained unresolved.

It may be emphasized here that several works starting with work of Sudarshan showed that a
relativistic theory of a system with finite degrees of freedom has to be free theory. Thus systems
with infinite number of degrees of freedom are essential to have interacting relativistic theory.

The second quantisation of Klein Gordon equation and Dirac equation, for example, provides
a framework in which a resolution of problems and a consistent interpretation was possible. The
quantum field theory of electrons and photons and, later, unified electro-weak model have been
brilliantly confirmed by the experiments.

We will discuss the second quantisation of Klein Gordon and Dirac equation in later lectures.
In this lecture, we briefly recall the main points of second quantisation of the Schrodinger theory

that was covered in a course last semester.
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82 Quantisation of Klein Gordon Equation

81 Important Remarks

We have attempted to follow

Gasiorowicz S., Elementary Particle Physics, John Wiley and Sons New York (1966)

as closely as possible taking what can be done in the course keeping the announced goals in
mind.

We will refer to portions from Gasiorowicz which are scanned and reproduced. It is strongly
recommended that the reader go through the original book as this course progress and try to
assimilate what has been left out.

We do not make any attempt, whatsoever, to 'modify’ or “improve’ what is available in the
book.

Frequently, the presentation will be interrupted by the teacher’s commentary and some Gray
Boxes containing short comments, or questions etc. These interruptions are meant to serve
two purposes. The purpose is to relate contents from Gasiorowicz to what the students already
know students, and to present it as smoothly and as coherently as possible. The Gray Boxes
are meant to encourage the students to ponder over the questions and comments in the Gray
Boxes and discuss the same among themselves.

Further detailed discussion of each of these Gray Boxes will be provided separately.

11



§2

Notation

The symbol 5:, appears in the combination
adb=a(@b) — (3,a)b

We use + for hermitian conjugate, when operators are considered, and
* for complex conjugation of ordinary functions.
Integrals over four-dimensional volumes in space-time or momentum
space are denoted by
[

fo

unless danger ‘of confusion requires d'x or [d%. Three-dimensional
integrals will always be denoted by

fmz

and

and
L
The notation
4= d—‘f = i
Todt d®

will sometimes be used to save space.
State vectors will be denoted by ¥ or .
Finally, we use natural units, in which

h=c=1
The symbol eg,(i, j, k) = 1, 2, 3 stands for the totally antisymmetric tensor

ey = | when i, j, k is an even permutation of 1,2, 3
= —1 when i, j, k is an odd permutation of 1,2,3
= 0 otherwise
Capyr with (o, 8, 7 8) = 0, 1,2, 3 is 4-dimensional generalization of this,
with eg5 = L.
Note. The word lepton has not been defined in the text. It refers to the
electron (mass 0.511 MeV, spin §), muon (mass ~105 MeV, spin ), and
the neutrinos.

12



83 Relativistic quantum mechanics

The relativistic energy momentum relation is
E% = p?c + m2c! (40)

We will use natural units A = 1.c = 1. Sometimes I may retain A factors. TO quantize we use
the correspondence

p— —ihV, ih% = Hp(Z,t) (41)
Eq.@0) and Eq. I) imply that the wave function obeys
12 (d—2 — VQ) O(Z,t) +m2cto(Z,t) = 0. (42)
dt? ’ ’

Due to appearance of square root in the Hamiltonian, the equation with second order time
derivative. has been written down.

This equation, now known as Klein Gordon equation, was originally, Schrodinger derived by
Schrodinger. He discarded it when he found that predicted H atom energy levels do not agree
with experimental data for H atom. Later he realised that in nonrelativistic limit the result

agreed with the Balmer formula.
What are the problems in using Klein Gordon equation as

relativistic quantum mechanical wave equation? Where can
we find a brief historical account?

13



It was rediscovered and used for quantum field theory of bosons by Klein and Gordon. The
essential new idea here is that the states of a relativistic particle in quantum mechanics are
described by ¢(Z,t) and the wave function ¢(Z,t) is reinterpreted as a set of generalised, one
for each space point. The Kelin Gordon equation is now treated as describing a classical wave
field, just like Maxwell’s equations describe the electromagnetic field.

The rules of canonical quantisation procedure can now be applied by reinterpreting Klein
Gordon equation as field equation . Its second quantisation led to filed theory of scalar (spin
zero) bosons.

The same reinterpretation and second quantisation has been carried out for Dirac equation

and the Schrodinger equation even though latter led to a consistent theory.

14



‘ Over to Gasiorowicz|

The quantum theory of fields was created by the application of & form
of the Heisenberg quantization rules to the classical electromagnetic field.!
There are special complications which arise in that case, caused in part by
the fact that the electromagnetic field has several components, and in part
by the fact that electromagnetic waves move with the velocity of light,
The basic concepts of field quantization are more casily studied in connec-
tion with the scalar ficld, which has only one component and which will
be denoted by ¢(x). The field ¢(z) is assumed to have a Fourier transform

|
) -Wjdqr*"d(q) (LD)

If this field is to describe the motion of a packet whose frequency and
wave number are related by

P =N@P i = o o, (1.2)

which, using the De Broglic relations between wave and particle attributes,
describes the relation between the energy and momentum for a particle of
mass %, then §(g) must have the form

#q) = 8(9,9" = 1*)xlq)
= 3(q" — u")x(9) (1.3)
Thus the field ¢(x) must satisfy the Kiein-Gordon equation
(3,2 + 1) $(2) = (0 + ) z) = 0 (14)

* The historical development of field theory may be followed through the collection
of papers published under the title Quantum Electrodymamics, J. Schwinger (ed.),
Dover, New York (1958).

Scan-3
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For our purposes it will be enough to consider plane wave solutions of
this equation. We shall use the notation

filz) = = (L.5)

1
@t
where

gz = "z, = ¢z, — q- X

q* = (0, q) (1.6)
The plane wave solutions will always be understood as the limiting case of
wave packet solutions, so that we will allow ourselves integrations by
parts of the spatial coordinates. The solutions (1.5) satisfy the following
normalization condition

if ] e - i) - a—a;,f«‘(z)!.(z)]
- i I d&*xf ¥(x) P f(x) = 20,89 —q") (1.7)
Also
J' &af, () P f(z) = f 2f () P[5 =0 (1.8)

We shall call the solutions f{x) positive frequency solutions and the
solutions f;*(x) negative frequency solutions.

Scan-4
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In contrast to the functions that satisfy the Schrédinger equation,
|$(x)[* may not be used as a density, for in general the integral of {¢(x)[?
over all space is not independent of time. A suitable density may be found
with the help of the observation that the four-current

-

J5z) =i ¢*(x) é% #(x) = i ¢*{z) 3" &(z) (1.9)
satisfies the condition r

0, () = i 3($%(x) " ¢(z) — 9" $%(z) $(z))
= i(¢*(x) O $(x) — O $%(=) ¢(2)) =0 (1.10)
Hence, with j*(z) = (p(x), j(x)), we get, on integraung by parts,

ff:an p(x) = -J-d'xv fx)=0
so that
jd‘z p(x) = constant.

Scan-5

Why can we not continue using the same normalisation as in
the Schrodinger case? What is the need to derive equation

of continuity again?

17
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84 Recall canonical quantisation

When we think of quantisation of system, we already have in mind a classical description of the
system in mind. This may not always be possible, for example, interacting spins is one such
system.

In canonical quantisation the starting point is the Lagrangian formulation of dynamics. A
state of the system is completely described by a set of coordinate {q1,q2,...} and generalised
velocities,{q1, g2, . . .}, The dynamics of the system is governed by a Lagrangian, £(q, ¢), which
is a function of the generalised coordinates and velocities.

A transition to the Hamltonian form of dynamics is made by introducing the canonical

momenta,p;, conjugate to the generalised coordinates defined by

0
= — 43
Pk = 55k (43)
The canonical quantisation consists in assuming that the genralised coordinates and mo-
menta are to be treated as hermitian operators is some Hilbert state satisfying the canonical

commutation relations
i, pj] = ihéij. (44)
The states of the system are described vectors in the Hilbert space.

All this is gives us only a mathematical frame work.
Where is the physical interpretation? What is the
Hilbert state? How it gets related to the experimental
observations.

A complete discussion will require going details of postulates of quantum theory. Instead of
digressing to that, here we will describe the process in a form that is suitable for in our present
context.

The next step in discussion of quantised theory is to find a complete set of commuting
observables constructed out of coordinates and momenta gives a complete orthonormal set. The
linear span of this complete othronormal set is the Hilbert space of quantum states.

At this stage it is important to realise that there is no unique commuting set of on observables.
Different sets lead to different representaions. To fix our idea in quantum mechanics of a point
particle two such sets are {7} and {p}. the position operators and momentum operators. These

lead to two different representations known as the coordinate and the momentum representation.

18



The states of simultaneous eigenvectors have a useful physical interpretation. Each dy-
namical variable in the commuuting set has a definite value in the states corresponding to the
simultaneous eigenvectors.

For any other state |¥), the probability amplitudes of the dynamical variables having dif-
ferent sets of values is obtained by expanding of the state vectors |¥) in terms of the basis of
simultaneous eigenvectors and noting down the coefficients.

Thus once we know the commuting set of observations, a Hilbert space and physical inter-

pretation can be built up following the procedure outlined above.

85 Over to Gasiorowicz

We start with the canonical commutation relations. The basic equations of canonical quantiza-

tion procedure are as follows.

19



In ordinary quantum mechanics these operaters act in a vector space
(Hilbert space of square integrable functions), and they are assumed to
obey equations of motion which. formally look exactly like the classical
equations of motion. In order to establish the quantum theory which
corresponds (in the above sense) to the classical scalar ficld we must
determine (1) what is the momentum canonically conjugate to the
“variable" ¢(x, r) and (2) what is the generalization of the Heisenberg
commutation rules applicable to this system. We follow the procedure
in the mechanical case, which is to find a Lagrangian that leads to the
equations of motion (1.4) and from it to obtain the canonical momentum
and the Hamiltonian, The equations below show the parallelism between
a system of N free particles and the scalar field. The particle Lagrangian

1 a
L(t) = 5 m Z(qc(t))!
(=1

contains a sum over the labels for cach degree of freedom. If we recognize
that the variable x in &(x, f) is also a labeling over a continuously varying
index [a more transparent notation might be ¢(1)], we see that the field
Lagrangian must be an integral over a Lagrangian density

L(1) -fd’x £(x, 1) (1.11)
The equations of motion for the mechanical system are obtained from
d( aL ) oL F
== - iwe]-:3N
de\ogdn)  dq(0) : ;

which follow from the principle of least action. The corresponding field
equations are

d L{d(x), 3" &(z)) ot
" = 1.12
2@ 6w 4@ s

The canonical momentum for the particle system is

aL
a 440

pr) =

Scan-6
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and the corresponding quantity for the field is

x . % (1.13)
3(2° $(z)) ()
Finally, the Hamiltonian is defined by

w(z) =

W
H = ‘2,.0.(!) ey — L(1)
and the field Hamiltonian is
H -=J‘d'z H(x) (1.14)
with
' 3e(z) = w(z) & H(z) — L(2) (1.15)
The Heisenberg commutation relations
pd1) gl = —idy
[pd0) pA0] = lgd1) g(N] =0
have as their field counterparts
[r(x, 1), $ly, )] = —i&x =) (1.16)

Scan-7

21



will also be satisfied. The field ¢*(x) will have its canonically conjugate
momentum
ac
* S ep—
" =37 s

The Hamiltonian density will be

¥(z) = w(z) & Plz) + 7*(z) & $%(x) — L
and the additional commutation relation

[w'(x. '). ¢.("v l)] o "'.6(x e Y)

will be assumed to hold. All commutators involving starred with un-
starred fields vanish at equal times, since these are independent fields.

It is important to note that the comfmutation relations are only defined
for equal times. Once these are given, the commutation relations at
different times are determined by the development of the system in time,

86 Number Operators

In quantum field theory the field operator does not have a direct physical interpretation. Con-

nection with physical quantities is arrived at by expanding the field operators in terms of plane

wave solutions. The expansion coefficients A, At, B, BT (see (1.37) below) will be operators. The

commutations relations for these operators will be obtained by first writing them in terms of
o(x), op(z) ete (see 1.38);next we note make use of ETCR (1.16) remembering that (1.13) gives
do¢*(x) = 7°(x). Now go through the steps presented below from Gasiorowicz. The equations

(1.39) and (1.40) give the final results for all noncommuting operators.

22



4 = [ 29 17.0) @) + 1200 B (@)

(137
$%(z) = f 2‘%" Ui2) Blg) + f;*(2) A*(a)]

with f(x) as defined in (1.5). The orthonormality conditions (1.7) and
(1.8) may be used to invert these expansions. We get

Ag) = i f P2 fD) P #(z)

B(g) = lfd’z f*(=) 3 §*(x)

. (1.38)
AN = i f &z §%() P f(2)
8@ = i [ 2 4 P 0

The commutation relations satisfied by the operators A(g),..., aq)/l
are easily obtained. For example,’

4@, 4°@)) = [ [ #4172 5 @), 1) & g0
= [ [est~12@ fw) 166, ¢

; 4Bt
—f2(@) foy) [¢(=), $* (W)} + -
We choose #, = y, and use the equal time commutation to get
4@, 4] = [ @20 foe) = £ k)
= 20, (g = q) (1.39)

Similarly, we find that

[B(9). B(q")] = 2, 8(q — q) (1.40)
with all other pairs of operators commuting.
Verify equations (1.38) to (1.40) given in the book by

Gasiorowicz.
Scan-9

Verify expression (1.47) for the total Hamiltonian given
by Gasiorowicz.

23



This follows from Lorentz invariance and the fact that a spacelike = can
be rotated into —z. Hence to satisfy (1.45) we must have

AR)=0 2!<0 (1.46)

Thus the commutator [¢(z), $*(¥)] vanishes when the sep;u'ation between
the points is spacelike. We shall have more to say about this important
result.

Let us return to the diagonalization of H. Some algebraic manipulations
give us H in terms of the operators A(g), . . ., B*(g),

daq. ‘
= L8 (0 40) 4@ + 0,80 B @) (1.47)
Wy

From this we find, with the help of the commutation relations (1.39)
and (1.40), that

and
[47(g), H] = —w, A%(g) (1.49)
Similarly
[B(g), H] = w, B(q) (1.50)
and
[B*(g), H] = —w, B*(q) (1.51)

If the state ¥y is an eigenstate of H with energy E, then
HAQY g = AQHY g + [H, AQI¥ e = (E — 0A(@)¥ s (1.52)
Similarly
HAY QY = (E+ w0)d (¥ (1.53)

and analogously for the states B(¢)¥'y and B+(gq)¥z. Thus the state
A(g)'¥' is again an eigenstate of H, but with energy lowered by an amount
w,. The state A7(g)¥ 5 is also an eigenstate of H, but with energy raised
by w,; similar statements hold for B(g)¥ 5 and B*(¢)'¥'z. We may speak
of A(q) and B(q) as annihilation operators, for they take away energy from
the system, and A*(g) and B+(q) as creation operators, for they add energy
to the system. The Hamiltonian is a positive definite operator, and there
must be a state of lowest energy. By adding a constant to H, if necessary,
we may shift the energy scale so that the lowest energy is zero. We assume

Number operators and the Hilbert space

Scan-10
In the problem of a single quantum harmonic oscillator the operators a,al and N = afa are

defined which obey the commutation relations

[a,al] =1, [N,a] = —a, [N,a'] = al. (45)
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The eigenvalues of N turned out to be all nonnegative integers 0, 1,2, ... and the operators a, af
act as lowering and raising operators for the number operator.

Here we have a similar situation. Number operators N(q), N(¢') are hermitian and N(q), N(¢’)
commute pairwise if ¢ # ¢’. Therefore these operators form a commuting set and have simul-
taneous eigenvectors which form a complete orthonormal set. Their linear span will give the
Hilbert space. There exists a state called itvacuum and denoted by,|0) such that all all the

number operators which is eigenvector of all number operators with zero eigenvalue.
N(q)]0) =0, for allg. (46)

87 Physical interpretation

Let us recall some results from second quantised Schrodinger field theory. The Schrodinger wave

function was treated as classical field and was expanded in terms of eigenfunctions u, ()

Y(E ) = anup(F)e Fntlh (47)

of the total Hamiltonian H = % + V(7)
The canonical quantisation led to the following commutation relations for operators ay, aL and N =
T
Q. ak-

la,al,] = 0km,  [Ni,ar] = —ag, [Ny,al] =af (48)

There is a close resemblance between the above equations and the corresponding equations for
the scalar field. So we can carry over the interpretation of the Schrodinger theory to the Klein
Gordon case. The only way the equations for the Klein Gordon case differ from our discussion
of quantised Schrodinger field is that the discrete index the operators A(q), B(¢) and N(g) in
scalar field case depend on a continuous index.

So the interpretation of the number operators N(q) is that it gives the number density, i.e.
the number of particles in range ¢ and ¢+ dq equals N()dq.

So read on Gasiorowicz where all this has and more has been explained.
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88 Back to Gasiorowicz

Let us return to the diagonalization of H. Some algebraic manipulations
give us H in terms of the operators 4(g), . . ., B*(¢),

H = [ 24 (0,40) A@) + 0,B(0) B*@) (1.47)
wa

From this we find, with the help of the commutation relations (1.39)
and (1.40), that

i [4(g), H] = w, A(q) (1.48)
an
[4*(g), H] = —w, A*(g) (1.49)
Similarly
[B(q), H] = w, B(q) (1.50)
and
[B*(g), H] = —w, BH(g) (1.51)

If the state ¥y, is an eigenstate of H with energy E, then
HA@Q¥g = AQH¥g + [H, AQI¥ g = (E — 0)4(@¥p (1.52)
Similarly
H A (@¥p = (E + 0)4* (¥ (1.53)

and analogously for the states B(g)'¥'z and B+(¢)¥'y. Thus the state
A(@)Y  is again an eigenstate of H, but with energy lowered by an amount
w,. The state A7(¢g)'¥' g is also an eigenstate of H, but with energy raised
by w,; similar statements hold for B(q)¥ s and B+(g)¥ z. We may speak
of A(q) and B(q) as annihilation operators, for they take away energy from
the system, and 4*(g) and B*(q) as creation operators, for they add energy
to the system. The Hamiltonian is a positive definite operator, and there
must be a state of lowest energy. By adding a constant to H, if necessary,
we may shift the energy scale so that the lowest energy is zero. We assume
now that there is a unigue state of zero energy, denoted by ¥, and called
the vacuum state. 1t must satisfy

H¥, =0 (1.54)
and
AlQ¥, = B(q¥, =0 for all q. (1.55)
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16 Elementary Particle Physics

We shall normalize it so that
(\Fo»‘l’o) =1 (1.56)

The vacuum expectation value of H, with the help of (1.55), is infinite.
Thus to shift the energy scale we must add an infinite constant or, al-
ternately, make use of our freedom to reorder the operators in H. If

we define H as
3
H =f 2%, [0,A*(9) A(q) + @, B7(4) B@)] (1.57)

there are no difficulties. The fact that the additive constant is infinite is
the first manifestation of trouble we encounter in a much less benign
form later: frequently matrix elements of products of operators at the
same point lead to infinities, and only sometimes will we be able to get
rid of them. To make sure that the most trivial infinities do not occur,
we shall always define quantities given in terms of free field operators
(such as H) as normal ordered, i.e., as decomposed into free creation and
annihilation operators and then reordered so that the annihilation op-
erators stand to the right of the creation operators. This instruction is
denoted by colons. Thus H, as it appears in (1.57), is written

H=: f Paim(@ (@) + V @)V $4@) + ud(a) $H@): (1.58)

in z-space.
Consider now the states
¥, = ANg)Yo (1.59)
and
Yo, = BH)¥, (1.60)

In both cases we find that the states have energy @,:
HY,, = HAY@¥, = [H, 41@]¥,
= w, A%, (1.61)
= wg¥,,
The orthonormality properties of the states are
(¥, Vo) = (Fo, A(g)4(9)F0) = (Fol4(@), A(@I¥0)

=2w,0(q — q) (1.62)
Similarly,
(¥o,» Fe,) = 20,800 — 4 (1.63)
and
o ¥e) =0 (1.64)
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The Scalar Field 17

A generalization of the states (1.59) and (1.60) is

W oo by e = e AY(@y) *  AT(@,)BH(K) * - B k)T, (165)
Jm!n! :

The energy of the state is calculated as follows
H A*(q,) A*(gq) * + - B+ (k)Y
= ([H, 4*(g)] + A*(q)H)A*(q) - - - B*(k)¥o
= W, A*(g) - Bk )¥o + A (q)H A*(q0) - - BH(k)'Yo
= 0, ANgy) - - Btk )¥o + A*(q)) A*(gH - - - B (k)0
+ At(g)[H, A*(ge)] - - - B* (k)%
= (@, + wc,) A*(gy) - - - Bk )Y, + A*(q) A*(gdH - -+ Bk )Y,
e GO e S wy,) A*(q) « - - B (k)Y (1.66)

The energy is therefore the sum of the energies created by the various
pperators. This suggests the interpretation that A* and B create quanta
carrying energy. To test this interpretation we consider the operator

X (g) = 2w—‘— A(g) Al@) (1.67)

which appears in H and in P. With the help of the commutation relations
we can show that

'N,A(q)‘ya;....kl... - [a(q s ql) stk 6(‘1 = qm)]‘pnmlkl». (1'68)

Thus the states'¥', .. are cigenstates of N ' 4(q). Morcover, the operator
N 4() =J;d’q N (@) (1.69)

has the eigenvalue », where » is the number of vectors among g, qa; * * * 4m
which lie in the volume Q in momentum space. We may interpret N’

as a number density operator, the number referring to the number of
quanta created by the operator A*(g). Similarly

Ngg) = ﬁ B*(q) B(q) (1.70)

is the number density operator for the quanta created by the operator
BH(g). The Hamiltonian may now be rewritten in the form

H =410, 40) + 0, X5(@) @

28



18 Elementary Particle Physics

Thus the energy in a volume element d®7 in momentum space is w, times
the number of quanta of types 4 and B in that volume of momentum
space. Simple manipulations show that the operator P, defined in (1.29)
may be written as

P = [dala @) + 4 X5(@) (172)

If we accept the quantum interpretation, this expression shows that we
may identify P with the momentum operator. It has the correct additivity
properties. If we apply H and P to a one particle state of type A or 5B,
we obtain the eigenvalues @, and q, respectively,

HY,= oY,
PV, = q¥,
from which we deduce that both quanta of type A and B have mass u.

One can also show that the Klein Gordon equation describes a zero spin particle. This is
done by showing that under rotations the wave function of one particle at rest does not change
hence its spin angular momentum is zero. For more detail we refer you to the original book by
Gasiorowicz.

This completes our discussion of physical interpretation of quantised Klein Gordon field.
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