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§1 Time development in quantum mechanics

Description of state of a quantum mechanical system at one time is by state vector in the

Hilbert space.As the system evolves this state vector will change. General requirements

∗Some chapters, that were prerequisites, have been included in lecture notes for completeness.
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on time evolution lead to time evolution governed by unitary operator and for short times

by a hermitian operator H which will be identified with Hamiltonian of the system.

Let |ψt0〉 represent the state of system at time t0 and |ψt〉 represent the state at time t.

We assume that |ψt0〉 at time t0 determines the state at time t completely. The principle

of superposition should apply at these two times t0 and t. If we have a relation at time t0

|ψt0〉 = α|χt0〉+ β|φt0〉 (1)

between three possible states,|ψ〉, |χ〉, |φ〉, the same relation must hold at all times t > t0

when the system is left undisturbed

|ψ(t)〉 = α|χt〉+ β|φt〉 (2)

Thus if we write

|ψt〉 = U(t, t0)|ψt0〉 etc. (3)

Then U(t, t0) must be a linear operator independent of ψ. Obviously U must reduce to

the identity operator at time t = t0

U(t0, t0) = I . (4)

Next we demand that the norm of vector |ψt〉 should not change with time and hence

〈ψt|ψt〉 = 〈ψt0|ψt0〉 for all t (5)

The above requirements (2) and (5), respectively, imply that the operator U must be a

linear operator and that it must be unitary.

UU † = U †U = I (6)

We shall now derive a differential equation satisfied by the state vector at time t. We,

therefore, compute

d

dt
|ψt〉 = lim

∆t→0

|ψt+∆t)〉 − |ψt〉

∆t

= lim
∆t→0

(U(t+∆t, t)− I)

∆t
|ψt〉 (7)

or
d

dt
|ψt〉 = X̂|ψt〉 (8)

where X̂(t) = lim
∆t→0

U(t+∆t, t)− I

∆t
(8”)

=
d

dt′
U(t, t′)|t′=t

The operator X̂ can be shown to be anti-hermitian and hence with notation H(t) ≡

X/(i~),H(t) will be hermitian. We therefore write Eq.(8) as

i~
d

dt
|ψt〉 = Ĥ(t)|ψt〉 (9)
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where

Ĥ(t) =
1

i~

∂

∂t
U(t, t′)|t′=t (10)

We shall now check that H(t) must be a hermitian operator. Consider Link[?]

U †(t, t′)U(t, t′) = I (11)

Differentiating w.r.t. t we get

{

∂

∂t
U †(t, t′)

}

U(t, t′) + U †

{

∂

∂t
U(t, t′)

}

= 0 (12)

Setting t′ = t and using U(t, t) = I we have

d

dt
U †(t, t′)|t′=t +

d

dt
U(t, t′)|t′=t = 0 (13)

or (
1

i~
Ĥ)† +

1

i~
Ĥ) = 0 (14)

or − iĤ† + Ĥ = 0 (15)

or Ĥ† = Ĥ (16)

Thus the time evolution of a quantum system is governed by the equation

i~
∂

∂t
|ψt〉 = Ĥ(t)|ψt〉 (17)

Using correspondence with classical mechanics, Dirac shows that the operator Ĥ the

represents the energy (or the Hamiltonian) of the system. ( See §2 below and the discussion

in the end of this section.) Using (3) in (18) we get

i~
∂

∂t
U(t, t0)|ψt0〉 = Ĥ(t)U(t, t0)|ψt0〉 (18)

This equation must hold for all vectors |ψ >. Hence the time evolution operator U must

satisfy the differential equation

i~
∂

∂t
U(t, t0) = Ĥ(t)U(t, t0) . (19)

Time variation of average values

The time evolution of a quantum system is governed by the Schrodinger equation

i~
d

dt
|ψt〉 = Ĥ|ψt〉. (20)

We will obtain an equation for time development of averages of a dynamical variable F̂

The result will turn out to have an obvious correspondence with the classical equation of
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motion for dynamical variable F . This then will suggest the identification of Ĥ as the

operator representing the Hamiltonian of the system.

Let F (q, p, t) be an dynamical variable of the system and let F̂ denote the corresponding

operator. We are interested in finding out how the average value

〈F̂ 〉 ≡ 〈ψt|F̂ |ψt〉 (21)

changes with time. The time dependence of the average value comes from dependence of

the three objects, the operatorF̂ , the bra vector 〈ψt|, and the ket vector |ψt〉, present in

Eq.(21). The equation conjugate to the Schrodinger equation

i~
d

dt
|ψt〉 = Ĥ|ψt〉 (22)

is given by

− i~
d

dt
〈ψt| = 〈ψt|Ĥ† (23)

Since the operator Ĥ is hermitian, the above equation takes the form

− i~
d

dt
〈ψt| = 〈ψt|Ĥ (24)

Therefore
d

dt
〈F̂ 〉 =

(

d

dt
〈ψt|

)

F̂ |ψt〉+ 〈ψt|
dF̂

dt
|ψt〉+ 〈ψt|F̂

(

d

dt
|ψt〉

)

(25)

Using Eq.(23) and Eq.(24) in Eq.(25) we get

d

dt
〈F̂ 〉 = −

1

i~
〈ψt|ĤF̂ |ψt〉+ 〈ψt|

dF̂

dt
|ψt〉 +

1

i~
〈ψt|F̂ Ĥ|ψt〉 (26)

The above equation is rearranged to give the final form

d

dt
〈F̂ 〉 = 〈

∂

∂t
F̂ 〉+

1

i~
〈 [F̂ , Ĥ] 〉 (27)

This result is known as Ehrenfest theorem. Comparing the Eq.(27) with the equation of

motion in classical mechanics for time evolution of dynamical variables

dF

dt
=
∂F

∂t
+ {F,H}PB (28)

and remembering that the commutator divided by i~ corresponds to the Poisson bracket

in the limit ~ → 0, we see that Ĥ must be identified as the operator corresponding to the

Hamiltonian H of the system.

A scheme to solve the time dependent Schrödinger equation

i~
d

dt
|ψ〉 = Ĥ|ψ〉 (29)
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is described. The solution will be presented in the form

|ψt〉 = U(t, t0)|ψt0〉 (30)

For our present discussion, it will be assumed that the Hamiltonian Ĥ does

not depend on time explicitly. Let the state vector of system at initial time

t = 0 be denoted by |ψ0〉.

Since Ĥ is always assumed to be hermitian, its eigenvectors form an orthonormal com-

plete set and we can expand the state vector at time t, |ψt〉, in terms of the eigenvectors.

Denoting the normalized eigenvectors by |En〉, we write

|ψt〉 =
∑

n

cn(t)|En〉. (31)

where the constants cn(t) are to be determined. Substituting (31) in (29) we get

i~
d

dt

∑

n

cn(t)|En〉 = Ĥ|ψt〉 (32)

i
∑

n

~
dcn(t)

dt
|En〉 =

∑

n

cn(t)Ĥ|En〉 (33)

Taking scalar product with |Em〉 and using orthonormal property of the eigenvectors |En〉,

we get

i~
dcm(t)

dt
= Emcm(t). (34)

which is easily solved to give

cm(t) = cm(0)e−iEmt/~. (35)

Therefore, |ψt〉,the solution of time dependent equation becomes

|ψt〉 =
∑

m

cm(0)e−iEmt/~.|Em〉. (36)

The coefficients cm(0) are determined in terms of the state vector |ψ0〉 at time t = 0 by

setting time t = 0 in the above equation. This gives

|ψ0〉 =
∑

n

cn(0)|En〉. (37)

The unknown coefficients cn(0) can now be computed; taking scalar product of Eq.(37),

with |Em〉 we get

cm(0) = 〈Em|ψ0〉. (38)

Thus Eq.(36) and (38) give the solution of the time dependent Schrödinger equation as

|ψt〉 =
∑

n

cn(0) exp(−i~Ent)|En〉 . (39)
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The right hand side of the above equation can be rewritten as

∑

n

cn(0) exp(−i~Ent)|En〉 =
∑

n

cn(0) exp(−i~Ht)|En〉 (40)

= exp(−i~Ht).
∑

n

cn(0)|En〉 (41)

Therefore Eq.(39) takes the form

|ψt〉 = exp(−iHt/~)|ψ0〉. (42)

In general, if the state vector is know at time t = t0, instead of time t = 0, the result

Eq.(42) takes the form

|ψt〉 = exp(−iH(t− t0)/~)
∑

n

cn(t0)|En〉 (43)

= exp(−iH(t− t0)/~)|ψt0〉. (44)

The time evolution operator U(t, t0), of Eq.(30), is therefore given by

U(t, t0) = exp(−iH(t− t0)/~) . (45)

Stationary states

Let us consider time evolution of a system if it has a definite value of energy at an initial

time t0. The value of the energy then has to be one of the eigenvalues and the state vector

will be the corresponding eigenvector. So |ψt0〉 = |Em〉, then at time t the system will be

in the state given by

|ψt〉 = U(t, t0)|Em〉 = exp(−iEm(t− t0)/~)|Em〉. (46)

It must be noted that the state vector at different times is equal to the initial state vector

times a numerical phase factor (exp(−iEm(t − t0)/~)). Therefore, the vector at time t

represents the same state at all times. Such states are called stationary states because

the state does not change with time. Every eigenvector of energy is a possible stationary

state of a system. In such a state the average value of a dynamical variable, X̂ , not having

time explicitly, is independent of time even if X̂ does not commute with Hamiltonian. In

fact the probabilities of finding a value on a measurement of the dynamical variable are

independent of time.

Constant of motion

Unless mentioned otherwise, we shall always assume that the Hamiltonian H of the system

under discussion is independent of time.

6



QM-Lecs-09;sum 7

If the dynamical variable F does not contain explicit time dependence, then we have
∂F
∂t = 0. If such an operator F̂ commutes with the Hamiltonian operator Ĥ, we will have

[F̂ , Ĥ ] = 0 . (47)

Eq.(27) shows that
d

dt
〈ψt|F̂ |ψt〉 = 0

Therefore in an arbitrary state, the average value of F̂ does not change with time. Such

a dynamical variable will be called a constant of motion.

§2 Summary

• Given the state of the system at a time t0, the state vector at any other time is

related to it by a unitary transformation U(t, t0).

|ψt〉 = U(t, t0) |ψt0〉

• The equation of motion of quantum system is the Schrodinger equation

i~
d

dt
|ψt〉 = Ĥ|ψt〉

where Ĥ is the Hamltonian operator of the system.

• The time evolution operator satisfies the equation

i~
∂

∂t
U(t, t0)|ψt0〉 = Ĥ(t)U(t, t0)

• If the Hamiltonian does not depend on time, the evolution operator is

U(t, t0) = exp[−iĤ(t− t0)/~]

• The average value of a dynamical variable,F̂ , satisfies

d

dt
〈F̂ 〉 = 〈

∂F̂

∂t
〉+

1

i~
〈 [F̂ , Ĥ ] 〉

• A dynamical variable is a constant of motion if it commutes with the Hamiltonian.

• The energy eigenstates of a system are staionary; they do not change with time.

The state vector of a stationary state at any time is equal to the initial state vector

multiplied by a numerical phase factor.

• The average value of a constant of motion G is independent of time in every possible

state of the system including nonstationary states.

• The avearge value of every dynamical variable is independent of time in stationary

states.
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§3 Time Evolution of Quantum Systems

The state vector at a given time specifies the state of the system at a given time and the

state at any time is obtained by solving the Schrödinger equation.

i~
d|ψ〉

dt
= H|ψt〉. (48)

where H is the Hamiltonian operator. The reason for identification of H, in the above

equation, with Hamiltonian is best brought out in by means of correspondence with equa-

tions in classical mechanics.

From now on we will assume that the Hamiltonian H does not depend on time. In

this case the state vector at time t is related to the state vector at initial time t0 by

|ψt〉 = U(t, t0)|ψt0〉 (49)

where

U(t, t0) = exp
(

−
iH(t− t0)

~

)

(50)

Since H is a hermitian operator, it follows that U(t, t0) is a unitary operator.

The Hamiltonian operator being Hermitian leads to the following important conse-

quences. In the table below a few examples of time evolution of states are given.
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Table : Time evolution energy eigenstates of a quantum
system

S.N. State at time t = 0 State at time t

1. |En〉 e−iEnt/~|En〉

2. c1|E1〉+ c2|E2〉 c1e
−iE1/~|E1〉+ c2e

−iE2t/~|En〉

3.
∑

k ck|Ek〉
∑

k cke
−iEkt/~|Ek〉

4. If states |ψt0〉, |φt0〉 evolve into |ψt〉, |φt〉,
then c1|ψt0〉+ c2|φt0〉 evolves into c1|ψt〉 + c2|φt〉

• The first row in the table shows that the energy eigenstates

H|En〉 = En|En〉 (51)

i.e. the states corresponding to a definite value of energy, have a very simple time

evolution. The state vector changes by phase factor, a multiplicative constant of

absolute value 1. Thus the state itself does not change with time. Therefore energy

states are called stationary states.

• The time evolution preserves the superposition of states as is brought out by the

examples in the second and last rows of the table.

• The time evolution is unitary and hence norm of the state vector is preserved. Math-

ematically this means that the norm 〈ψt|ψt〉 is independent of time. In other words

〈ψt|φt〉 = 〈ψt0|φt0〉 (52)

and
d‖ψ(t)‖2

dt
= 0 (53)

Remembering that ‖ψ(t)‖2 is just the sum of probabilities of all possible outcomes,

The above result has a physical interpretation that the total probability of all possible

outcomes of a measurement remains constant (= 1) at all times.

Here the results given above are a consequence of Hamiltonian being hermitian.

In an alternate approach [?], one can start from requirements that superposition be

preserved and the normalization of the state vector should not change with time and

prove that this leads to an equation of the form (48) where H some hermitian operator.
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Identification with operator corresponding to Hamiltonian can then be done by making

use of classical correspondence.

§4 Heisenberg Picture of Quantum Mechanics

§1 Schrodinger picture

In most commonly used description of quantum mechanics, the time development is de-

scribed by the time dependent Schrödinger equation.

i~
d|ψt〉

dt
= H|ψt〉 (54)

whereH is the Hamiltonian operator of the system. The dynamical variables are operators

and do not evolve with time. This description of time evolution is known as the Schrodinger

picture of quantum mechanics.

Note that average values and probabilities are observable quantities, but not the wave

function or the state vector. This fact allows to describe the time development in several

possible ways. We will describe two alternate and important ways of describing time

development of a quantum system known as the Heisenberg picture and the Dirac picture.

We use subscript S to denote the Schrodinger picture states |ψ〉S and operatorsXS(q, p)

or simply XS .

To simplify present discussion, we will assume that the Hamiltonian is independent of

time. The state vector at time t is given by

|ψt〉S = U(t, t0)|ψt0〉S (55)

where the time evolution operator is given by

U(t, t0) = exp(−iH(t− t0)/~). (56)

Without loss of generality, we will set t0 = 0. and write

|ψt〉S = e−iHt/~|ψ0〉 (57)

§2 Heisenberg Picture

The Heisenberg picture state vector is defined by

|ψt〉H = eiHt/~|ψt〉S = |ψ0〉. (58)

The Heisenberg state vector is independent of time and coincide with the state vector in

the Schrödinger picture at initial time. The time development of the Heisenberg picture

operators is defined so that the average value of any dynamical variable at time t in the

Schródinger and Heisenberg pictures coincide. Thus we demand

H〈ψt|XH(t)|ψt〉H = S〈ψt|XS |ψt〉S (59)
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Substituting (57) and (58) gives

〈ψ0|XH(t)|ψ0〉 = 〈ψ0|e
iHt/~XS e

−iHt/~|ψ0〉. (60)

We, therefore, define the Heisenberg picture operators by

XH(t) = eiHt/~XS e
−iHt/~. (61)

Equation of Motion In Heisenberg picture the state vector does not evolve with time.

So how do we describe the time development of a system? The answers is that in the

Heisenberg picture the operators carry the entire time dependence. So for a point particle,

the position operator, the momentum operator, in fact all dynamical variables become time

dependent. This is parallel to the classical description of the time evolution of the state

described by the position and momentum. The equations of motion are then the equations

telling us how the a given dynamical variable will change with time. The equation of

motion is easily derived from Eq.(61) and we compute

dXH

dt
=

d

dt

[

eiHt/~XS e
−iHt/~

]

(62)

=
d

dt

(

eiHt/~
)

XS e
−iHt/~ + eiHt/~

( d

dt
XS

)

e−iHt/~ + eiHt/~XS
d

dt

(

e−iHt/~
)

(63)

= iH
~
eiHt/~ XS e

−iHt/~ + eiHt/~
( ∂

∂t
XS

)

e−iHt/~ + eiHt/~XS e−iHt/~−iH
~

(64)

=
i

~
HXH +

(∂X

∂t

)

H
−XH

i

~
H (65)

Here we have used
d

dt
eiHt/~ =

(

iH
~

)

eiHt/~ = eiHt/~
(

iH
~

)

. (66)

Thus we arrive at the final form of equations of motion in the Heisenberg picture

dXH

dt
=

(∂X

∂t

)

H
+

1

i~

[

XH ,H
]

−
. (67)

Recalling that the ( 1
i~× commutator) has correspondence with the Poisson bracket, we

have an obvious correspondence with the Poisson bracket form of equations of motion in

classical mechanics.

The steps (62)- Eq.(65), leading to the final result (67), require some explanation and

care as explained in Notes and Comments section at the end.

§3 Notes and comments

[1] Care needed with operators The differentiation of an operator expression eλF (t)

with respect to time requires care. λF (t) may be an operator or a matrix. Both the
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following forms
deλF (t)

dt
=
dF (t)

dt
eλF (t) = eλF (t) dF (t)

dt
(68)

are valid if and only if the derivative dF (t)
dt commutes with F (t).

[2] The equation

H〈ψt|XH(t)|ψt〉H = S〈ψt|XS |ψt〉S (69)

which relates the Heisenberg picture operators and kets with the Schrodinger picture

objects can be solved easily under the assumption that the Hamiltonian H does not

depend on time explicitly. Assuming this to be the case, show that

XH(t) = eiHt/~XS e
−iHt/~. (70)

However, in the case when the Hamiltonian does depend on time, H = H(t), the

corresponding result is more complicated.

§5 Pictures in Quantum Mechanics

§1 Pictures in quantum mechanics

We recall that the time evolution of quantum states is given by the time dependent

Schrödinger equation.

i~
∂|ψ〉

∂t
= H|ψ〉. (71)

and the operators do not carry any time dependence. The dynamical variables, represented

by operators are specified once for all and do not evolve with time. This ’picture’ of time

evolution is called Schrodinger picture.

Recall that the state vector by itself is not measurable quantity. Only the average

values and the probabilities are measurable quantities. This allows the possibility of

describing the time dependence in several ways. Heisenberg [?] and Dirac pictures are two

important alternate descriptions of time evolution.

§2 Interaction picture

We shall now discuss the interaction picture, also known as Dirac picture. We shall

denoting the Schrodinger picture kets and operators by |ψ〉S ,XS etc. and |ψ〉I ,XI etc will

denote the corresponding quantities in the interaction picture.

Let the Hamiltonian of the system be written as sum of two parts

H = H0 +H ′. (72)
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H0,H
′ will be called free part and the interaction part of the Hamiltonian H, respectively.

While H0 is assumed to be independent of time, the interaction Hamiltonian may or may

not depend on time. The state of a system in the interaction picture are defined by

|ψt〉I = eiH0t/~|ψt〉S . (73)

and the dynamical variables of the interaction picture are defined by demanding that the

average values in the interaction and Schrödinger pictures coincide at all times:

I〈ψ|XI |ψ〉I ≡S 〈ψ|XS |ψ〉S . (74)

Substituting

|ψt〉S = e−iH0t/~|ψt〉I , (75)

from (73) we get

I〈ψ|XI |ψ〉I = I〈ψ|e
iH0t/~XSe

−iH0t/~|ψ〉I . (76)

Therefore, we use

XI = eiH0t/~XSe
−iH0t/~ (77)

to define the an interaction picture dynamical variables.

The time dependence of the interaction picture operators is very simple and is governed

by the free Hamiltonian H0:

i~
dXI(t)

dt
=

[

XI ,H0

]

. (78)

As an example, it should be obvious that, the free particle Hamiltonian H0 in the inter-

action picture remains identical with H0:

(H0)I = eiH0t/~H0e
−iH0t/~ = H0. (79)

On the other hand, even though the interaction part of the Hamiltonian, H ′, may be

independent of time, the interaction picture Hamiltoinan H ′
I

H ′
I(t) = eiH0t/~H ′e−iH0t/~ (80)

is different from H ′ and depends explicitly on time. The time dependence of the state

vector in the interaction picture is governed by this operator H ′
I , the interaction part of

Hamiltonian,H ′, transformed to the interaction picture. We will now derive the differential

equation which gives the evolution of the state vectors. For this purpose we begin with

(73)

i~
d

dt
|ψt〉I = i~

d

dt

(

eiH0t/~|ψt〉S

)

= i~
( d

dt
eiH0t/~

)

|ψt〉S + eiH0t/~
(

i~
d

dt
|ψt〉S

)

(81)

= −H0e
iH0t/~|ψ0〉S + eiH0t/~

(

H0 +H ′
)

|ψt〉S

= eiH0t/~(−H0)|ψ0〉S + eiH0t/~
(

H0 +H ′
)

|ψt〉S

= eiH0t/~
(

H ′
)

|ψt〉S (82)
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Next, we need to express the Schrödinger picture state vector, |ψt〉S , in the right hand

side in terms of the interaction picture state vector |ψt〉I . Thus we get

i~
d

dt
|ψt〉I = eiH0t/~

(

H ′
)

e−iH0t/~|ψt〉I . (83)

Thus we get the desired equation for time evolution of the state vectors in the interaction

picture in the final form

i~
d

dt
|ψt〉I = H ′

I |ψt〉I (84)

where H ′
I is given by Eq.(80). The state vector evolves with the interaction part of the

Hamiltonian.

§6 Perturbation Expansion in Interaction Picture

§1 Integral equation for time evolution operator

Let H = H0+H
′ be the Hamiltonian of system of interest, H0 and H

′, respectively, being

the free part and interacting part of the total Hamiltonian . In the interaction picture the

time dependence of an operator is given by

i~
dXI(t)

dt
= [XI(t),H0]. (85)

The solution of this equation can be written down explicitly and we have

XI(t) = eiH0t/~XI(0)e
−iH0t/~. (86)

The time development of the state vector in the interaction picture is given by the

Schrodinger equation

i~|ψt〉I = H ′
I(t)|ψt〉. (87)

It must be noted that the interaction Hamiltonian in the interaction picture, H ′
I(t), is

always time dependent whether the Schrodinger picture operator depends on time or not.

This makes it impossible to write an explicit solution to (87) impossible. Here we will be

interested in deriving a perturbative expansion in powers of H ′
I(t).

Let U(t, t0) be unitary operator which connects the interaction picture states at times

t, t0):

|ψt〉I . = U(t, t0)|ψt0〉I . (88)

Obviously we must have

U(t0, t0) = Î . (89)
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Substituting (88) in both sides of Eq.(87), we get the following equation for the time

evolution operator U(t, t0).

i~
d

dt
U(t, t0)|ψt0〉I = H ′

I(t)U(t, t0)|ψt0〉I . (90)

Since the initial state |ψ, t0〉 is arbitrary, we get

i~
d

dt
U(t, t0) = H ′

I(t)U(t, t0). (91)

Integrating this equation w.r.t. time and using the initial condition (89) we get

U(t, t0) = Î +
1

i~

∫ t

t0

H ′(t)U(t, t0) dt. (92)

This integral equation is starting point for a perturbative expansion of the time evolution

operator U(t, t0).

§2 Perturbative solution

In order to simplify the notation, we will drop the suffix I from H ′
I(t) and use

the notation H ′(t) to denote the interaction picture operator.

For book keeping purpose we rewrite equation (92) as

U(t, t0) = Î +
λ

i~

∫ t

t0

H ′(t)U(t, t0) dt (93)

and the parameter λ will be set equal to unity in the end. As zeroth order approximation

we may write

U (0)(t, t0) = Î (94)

and obtain the next approximation by inserting the above expression in the right hand

side of (93). This gives

U (1)(t, t0) = Î +
λ

i~

∫ t

t0

H ′(t1) dt1. (95)

Repeating this process, by inserting U (1)(t, t0) for U(t, t0) in the right hand side of Eq.(93),

we get the second order approximation as

U (2)(t, t0) = Î +
λ

i~

∫ t1

t0

H ′(t)dt1 +
( λ

i~

)2
∫ t

t0

∫ t1

t0

H ′(t1)H
′(t2) dt2dt1. (96)

Iterating the above process gives an infinite series in powers of λ, The double integral in

the right hand side can be written as

∫ t

t0

∫ t1

t0

H ′(t1)H
′(t2) dt2dt1 =

1

2

∫ t

t0

∫ t

t0

T
(

H ′(t1)H
′(t2)

)

dt2dt1. (97)



Here the symbol T stands for time ordering, defined by,

T
(

H ′(t1)H
′(t2)

)

=

{

H(t1)H(t2), if t1 > t2,

H(t2)H(t1), if t2 > t1.
(98)

Proof of Eq.(97) is left as an exercise in double integration.

Later terms of the series can be found and turn out to be multiple integral of time

ordered product of more factors of H ′(t):

U(t, t0) = I +

∞
∑

n=1

( 1

i~

)n
∫ t

t0

dt1 . . .

∫ t

t0

dtnT
{

H(t1)H(t2) . . . H(tn)
}

. (99)

Retaining first few terms in the above series gives useful approximation for several appli-

cations. The series (99) is symbolically written as

U(t, t0) = T exp

(

−i

~

∫ t

t0

H(t)dt

)

. (100)

and the right hand side is known as time ordered exponential of the argument.
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