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Plan of the Talk

Entropy then
Clausius invents entropy;
∆q is not a perfect differential
dS = ∆q/T is a perfect differential
Carnot’s principle
Clausius’ explanation
Boltzmann statistical entropy

entropy now:
Shanon and information theory
Renyi and fractal measures
nonlinear dynamical entropy: Kolmogrov and Sinai
Tsallis non extensive entropy
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entropy then : Clausius

Entropy is one of the most influential of the terms coined so far in human history

Formally, entropy was invented in the year 1865 by
Rudolf Julius Emmanuel Clausius (1822 - 1888)

Clausius(1851, 1862, 1865, 1867): The kind of motion we
call Heat

"Entropy" in Greek means "transformation"

Clausius: I have intentionally formed the word entropy to be as
similar as possible to the word energy; for, the two magnitudes to be
denoted by these words are so nearly allied in their physical
meanings that a certain similarity in designation appears to be
desirable

Entropy was understood as the penalty incurred when
we convert heat to work : more on it later.
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Clausius: Heat is not a perfect differential

dU = ∆q + ∆W (Energy is conserved)

∆q = dU − ∆W

= CV dT + P dV

= (CV + nR)dT − nR
T

P
dP

= F1(T, P )dT + F2(T, P )dP

It is readily seen that
(

∂F1

∂P

)

T

6=

(
∂F2

∂T

)

P

which implies that ∆q is NOT A PERFECT DIFFERENTIAL.
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heat divided by temperature is a perfect differential

Consider the quantity: heat exchanged divided by temperature

∆q

T
=

dU

T
−

∆W

T

= CV

dT

T
+

P

T
dV

=
CV + nR

T
dT − nR PdP

= φ1(T, P )dT + φ2(T, P )dP

It is readily seen that
(

∂φ1

∂P

)

T

=

(
∂φ2

∂T

)

P
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Entropy ... born

Thus the quantity
∆q

T

is a PERFECT DIFFERENTIAL.

Clausius called it entropy and denoted it by the symbol S,
after Sadi Carnot

dS =
∆q

T

Heat is energy in transit. Entropy looks very much like
heat i.e. like energy except that it is divided by
temperature
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Why entropy ?

Having invented a new thermodynamic variable
Entropy, Clausius asserted

Energy of the universe remains constant
This assertion is about energy conservation;
called the first law of thermodynamics

Entropy of the universe tends to a maximum

Why was this ’strange’ assertion made ?

What were his compulsions to make this assertion ?

to answer this question we have to go back by a few
decades, to the year 1824
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Carnot and his engine

Nicolas Leonard Sadi Carnot (1796 - 1832)

Sadi Carnot was working on the basic principle of heat
engines

Sadi Carnot (1824), Reflexions on the motive power of
fire and on the machine to develop that power

Carnot reasoned that mere production of heat is not sufficient
to give birth to impelling power. It is necessary there should be cold
- without it heat is useless.

In other words we need both heat source and a heat
sink to get work from heat.

Carnot found that the amount of energy you get out as
useful work from a machine is always less than the heat
you put in.
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efficiency of Carnot engine

Carnot reasoned:
when q1 Calories of heat fall from temperature T1

to 0 then, the whole of heat will be converted to
work: W = q1.
However since the calory falls to temperature
T2 > 0, only the corresponding proportion
(T1 − T2)/(T1 − 0) of q1 shall yield work;
the remaining q2 is rejected to the heat sink at
temperature T2.

W = q1 × η; η = T1−T2

T1

< 1, when T2 > 0

Thus heat can not be completely converted into work

Work, however, can be completely converted into heat

this is called thermodynamics irreversibility
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Entropy is penalty paid for extracting work from heat

whenever we extract work from heat we have to pay a
penalty

Forty years later Clausius is going to term this penalty
as entropy - a name that rhymes with energy !!

For a few decades scientists did not recognize the
fundamental import of Carnot’s finding

nor did they recognize that entropy is fundamentally
quite different from energy

Entropy was invented for purpose of explaining why the
efficiency of a Carnot engine is less than unity
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Clausius explains Carnot’s principle

Entropy lost by the heat source is q1/T1

Entropy gained by the heat sink is q2/T2

change in entropy of the machine is zero since it comes
back to its original state after one cycle: Entropy is a
state function of the state variables.

for an ideal engine

dS =
q2

T2
−

q1

T1
= 0

From the first law we have: q1 − q2 = W

Therefore
η = 1 −

q2

q1
= 1 −

T2

T1
QED
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Entropy then: Thermodynamic entropy

Thus thermodynamic entropy is simple:
It is a measure of that part of energy extracted from a heat source by an

irreversible process which can not be converted into work

The statement dS ≥ 0 is an assertion .... an AXIOM.

we call it the Second Law of Thermodynamics

you can not derive it;
of course, for that matter, you can not derive any law
of nature
the best you can do is to show that one law of nature
is based on another

Ludwig Eduard Boltzmann (1844 - 1906) made one
such bold attempt
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Boltzmann and his bold attempts

Boltzmann tried to derive the law of increasing entropy
from Newton’s laws of motion.

What are the issues ?
Newton’s laws are time reversal invariant

Thermodynamic or macroscopic behaviour has an arrow of time - the direction of

increasing entropy

in the synthesis of a macroscopic object from its microscopic constituents, when

and why the time symmetry gets broken ?

Boltzmann did not quite succeed in his attempt to derive time asymmetric macroscopic

behaviour from time symmetric microscopic laws.

But then, his bold, though ’failed’ attempts gave rise to a
new subject called statistical mechanics and a new
definition of entropy ... the STATISTICAL ENTROPY
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Boltzmann entropy

S = kB log Ω̂

Ω̂ denotes the number of microstates of a macroscopic
system and kB = 1.381 Joules per Kelvin

for an isolated system of N non-interacting particles
(ideal gas) with energy E confined to a volume V ,

Ω̂ =
1

h3N

V N

N !

(2πmE)3N/2

Γ(3N
2

+ 1)

Boltzmann liberated entropy from its thermal confines:
we can define entropy of coin tossing: S = kB log(2) (there are two outcomes);
entropy for the throw of a die: S = kB log(6) (there are six outcomes)

etc
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microstate and macrostate

The basic idea behind statistical entropy is as follows:
A macroscopic system starts from an arbitrary initial
microstate;
it goes from one microstate to another dictated by
well defined dynamics
Given enough time the system visits all possible
microstates: ERGODICITY
Consider a macroscopic property;
to each microstate there corresponds a value of the
macroscopic property under consideration;
in this sense we can consider the macroscopic
property as a random variable
let us follow the time evolution of the random variable
as the system evolves from an initial microstate
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it is natural to seek maximum entropy state

The macroscopic value changes initially with time

eventually the system settles down to a unique
equilibrium state whence the macroscopic property
does not change with time .... except for fluctuations
which are inversely proportional to the size of the
system. Why ?

There are overwhelmingly large number of microstates,
all of which correspond to the same macroscopic
property. Stated simply: Equilibrium corresponds to
maximum entropy state.

Invariably the equilibrium value of the macroscopic
property corresponds to to the average value: average
of the random variable over the microstates of the
equilibrium ensemble
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very old notions of entropy

this picture of the equilibrium state of a macroscopic
system is intuitive and appealing.

Such a notion existed some two thousand years before
Boltzmann

Diogenes Laertius (200 AD): Everything existing in the
Universe is the fruit of chance and necessity

Chance : Entropy and Necessity : Energy

Look at the following lines from the book de Rerum
Natura written by Titus Lucreitus Carus (94 - 55 BC)
summarizing the prevailing thoughts besides those of
his masters Leucippus (440 BC), Democritus (370 BC)
and Epicurus (341 -271 BC).
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Leucritus (94 - 55 BC), de Rerum Natura

.........................................................
It was certainly not by design that the particles fell into order.

They did not work out what they were going to do,
but because many of them by many chances

struck one another in the course of infinite time
and encountered every possible form and movement,

that they found at last the disposition they have,
and that is how the universe was created.
Particles, kept together for so many years,

when by a chance they had found harmonious movements,
brought it about that rivers flow into the sea

to keep it going, while earth by the heat of the sun
renews its products, and living creatures breed on
and the gliding lights in the sky are never put out.

....................................................
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old notions die

There was no role for God in the scheme of things.

The view of nature based on chance, necessity and
atomism of the very early times was inherently and
fiercely atheistic.

Perhaps this explains why it lost favour and languished
into oblivion for over two thousand years.

Let us get back to the statistical entropy of Boltzmann
proposed in the year 1877 in his paper on the relation
between the second law of thermodynamics and
probability theory with respect to the law of thermal
equilibrium Weiner Berischte vol. 76, page 373 (1877)
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Boltzmann-Gibbs entropy

For an isolated system, all microstates are equally
probable;

for a system which is not isolated, the microstates are
not equally probable

Let {pi : i = 1, Ω̂} denote the probabilities of the
microstates

We have the so-called Boltzmann-Gibbs entropy

S = −kB

bΩ∑

i=1

pi log(pi)
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Boltzmann-Gibbs-Shanon entropy

Claude Elwood Shanon (1916 - 2001) was investigating
the transmission of information through noisy channels;

He showed, in the year 1948, that the amount of
information contained in a series of events with
probabilities {pi} is given by

S(p1, p2, · · · , pN ) = −K
∑

i

pi log pi

where K is a constant.

This heralded a new subject called Information Theory

We call this the Boltzmann-Gibbs-Shanon entropy
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Rényi Entropy

Alfréd Rényi (1921 - 1970) generalized the notion of
entropy and defined what we call now as the Renyi
entropy given by

S =
k

1 − q
log

∑

i

p
q
i

In the above k is constant and q is a real number
between −∞ and +∞.

It is readily seen that Rényi entropy reduces to
Boltzmann-Gibbs-Shanon entropy in the limit of q → 1

Let Z(q) =
∑

i pq
i (ǫ) be sum over intervals indexed by i

for which the measure pi 6= 0.
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partition function

Z(q) is like partition function and q is like inverse
temperature.

we make an ansatz Z(q) ∼ ǫτ (q) where τ (q) is like free
energy

Z(q) =
∑

i

p
q
i (ǫ)

=
∑

p

ρ(p)pq

= exp [log ρ(p) + q log(p)]

= ρ(p⋆)(p⋆)q

where p⋆ is the value of p for which log ρ(p) + q log(p) is maximum: Called saddle

point method of evaluating integrals
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scaling of p and of ρ(p)

For convenience let us denote p⋆ by p.

p ∼ ǫα

ρ(p) ∼ ǫ−f(α)

Then we get

Z(q) ∼ ǫ−f(α)+qα = ǫτ (q)

Thus τ (q) = − [f(q) − qα(q)] which is negative Legendre
transformation. We have

α(q) =
d

dq
τ (q)
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Does God play dice ?

Thus α is like energy and

f(α) is like entropy.

This completes the thermodynamics description of
multifractals.

We have what are known as multifractal or Renyi
dimension given by

D(q) =
τ (q)

q − 1
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origin of statistics in macroscopic evolution

What is the origin of the stochasticity in description of
macroscopic system ?

What is the origin for statistics in the description of the
thermodynamic variable entropy ?

Is statistics a convenient tool for describing the
macroscopic object ?

Or is there an element of truth in the statistical
description ?

Remember what Einstein said in a different context:
Does God play dice ?

At the root of statistical behaviour lies the element of
unpredictability
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nonlinear dynamics and chaos

We have systems which obey deterministic equations of
motion;

but the time evolution they produce become
unpredictable at least at long times.

Such systems are called chaotic system.

All systems for which thermodynamic description holds
good are chaotic.

Thus chaos provides the raison d’etre for statistical
description of deterministic evolution

this leads to Kolmogrov-Sinai entropy
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sensitivity to initial conditions

Two phase space trajectories of a chaotic system
starting off from arbitrarily close phase space points
diverge exponentially and become completely
uncorrelated asymptotically.

This means that you can not have any hope of making
long term predictions of several properties of the
system from deterministic equations if they also happen
to be chaotic.

In other words determinism does not necessarily imply
predictability.

Possibility of dynamical instability due to sensitive
dependence on initial conditions was known to Poincaré
in 1890
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Lyapunov exponents

But the full import of Poincaré’s findings was lost on the
physicists for over half a century.

They did not think much of it until computers arrived on
their desktops and helped them see on graphic
terminals, the strange attractors traced by low
dimensional, nonlinear, dissipative chaotic systems

A standard way of determining whether or not a
nonlinear dynamical system is chaotic is to calculate
the Lyapunov exponents

There are as many . Lyapunov exponents as the
dimensions of the phase space in which the dynamics
takes place.
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nonlinear dynamical evolution

Let us concentrate on a dynamical system in an
n-dimensional phase space.

Consider an n - dimensional sphere of initial conditions.

You can visualize them as a dust of phase space points
occupying an n-dimensional sphere.

With the passage of time each phase space point (i.e.
each dust particle) moves deterministically.

The sphere of phase space points shall sweep the
phase space and occupy a different region in the phase
space at a later time.

In other words, the cloud sweeps through and moves to
another region changing, in general, its volume and
shape during the process
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folding and divergence of dynamical trajectories

For an Hamiltonian system the volume - i.e the volume
occupied by the phase space points of initial conditions
- remains constant.

This is due to Liouville theorem.

If the system is dissipative, the volume decreases with
time and eventually becomes zero.

However, in general, the shape changes, for both
Hamiltonian and dissipative dynamics

For chaotic systems the shape change can be rather
weird. The cloud sort of thins out and begins to cover
regions rather sparsely.
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spectrum of Lyapunov exponents

Let us consider dynamical evolution over a duration of
time τ .

In general the n - dimensional sphere would evolve into
an n - dimensional ellipsoid.

Let the diameter of the initial sphere be d.

Let {di(τ ) : i = 1, n} denote the major axes of the
ellipsoid at time τ .

We arrange them in a descending order:

dn ≤ dn−1 ≤ · · · ≤ d2 ≤ d1.
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definition of Lyapunov exponents

The Lyapunov exponents are defined as,

λi =
1

τ
log

(
di(τ )

d

)
, (1)

in the limit d → 0 and τ → ∞.

The above equation defines local Lyapunov exponents.
Figure depicts a circle of initial conditions evolving into
an ellipse over an interval of time τ .
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sphere morphs into an ellipsoid

τ

d 2

d 1

d

Figure 1: Illustration for understanding Lyapunov ex-

ponents
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calculation of Lyapunov exponents

A way to calculate the Lyapunov exponents consists of
linearizing the evolution equations at a point on a
trajectory and determine the n × n stability matrix
which describes the local exponential separation rates
along the eigenvectors.

Lyapunov exponents can be calculated from the
corresponding eigenvalues.

The Lyapunov exponents can be in general positive or
negative or zero: some of them can be positive and
some, negative and at least one zero.

The eigenvectors corresponding to positive Lyapunov
exponents indicate directions of expansion while the
eigenvectors corresponding to the negative ones
indicate directions of contraction.
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calculation of Lyapunov exponents

The dynamical system will be highly unstable along
expanding directions in the phase space and highly
stable along directions of contraction.

If δVn(0) is the volume of the sphere of initial conditions
at a phase space point ~x0, then due to dynamical
evolution over time τ it becomes

δVn(τ ) = δVn(0) exp[(λ1 + λ2 + · · · λn)τ ]. (2)

We can average the local Lyapunov exponents over the
strange attractor and calculate global Lyapunov
exponents.

When we talk of a single Lyapunov exponent we always
mean the largest one, denoted by λ1.
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predictability of the dynamics

The dynamical system is chaotic if the largest Lyapunov
exponent is positive.

Lyapunov exponents help quantify the predictive
capabilities of deterministic (nonlinear and chaotic)
equations.

Let us suppose that we can specify the initial conditions
with a precision ǫI.

Also suppose we are required to predict the phase
space variables with a precision say ǫF.

We can make such predictions only up to time t < tL,
given by,

tL ∼
1

λ1
log

(
ǫF

ǫI

)
. (3)
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determinism does not imply predictability

The predictions become imprecise beyond tL.

If we want to make precise predictions beyond tL, then
we have to specify more precisely the initial conditions.

For systems with many degrees of freedom this
difficulty of prediction becomes all the more acute
because of the dimensionality of the phase space.

Initial error is amplified in each unstable phase space
direction (eigenvector) at rates given by the
corresponding (positive) Lyapunov exponent
(eigenvalue).

Therefore precision required on the initial conditions
should be increased at a rate proportional to the sum of
positive Lyapunov exponents
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Kolmogrov - Sinai entropy

the sum of positive Lyapunov exponents is usually called
as Kolmogrov Sinai entropy

We can say asymptotically the system becomes
unpredictable.

In other words, the system becomes amenable to a
statistical description.

We recognize thus, that at least in principle, Chaos
provides raison d’etre for statistics in statistical mechanics.

All systems that obey the laws of . thermodynamics are
chaotic.

Nonlinear dynamics and chaos provide the link between
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Tsallis Entropy

Constantino Tsallis proposed in the year 1988,
proposed an entropy given by

S = k
1 −

∑
i p

q
i

q − 1

where the microstates are indexed by i and their
corresponding probabilities are given by pi.

in the limit q → 1, we recover the Boltzmann - Gibbs -
Shannon entropy

Tsallis entropy is not extensive.

Like Gaussian is natural to Boltzmann-Gibbs-Shannon
entropy, Levy distributions are natural to Tsallis entropy
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There are several entropies I have not discussed here

these include
Brillouin - Schrödinger Negentropy
Fisher entropy
von Neumann entropy
Algorithmic entropy
Ruelle - Bowen- Sinai (RBS) entropy
Kaniadakis entropy
and many more ......

and

THANKS
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