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AIM

the aim of this talk is to find where we were in the
context of Monte Carlo simulation and where we are
likely to be in the coming years;

to identify challenging problems that would require
collaboration in terms of sharing of computing
resources, data and algorithms.
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Monte Carlo : general blah ... blah

Consider a closed system in equilibrium at temperature
T = 1/kBβ.

kB is the Boltzmann constant. in units of kBT

Aim is to simulate the system employing Monte Carlo
methods.

How do we do that ?

generate a large number of micro states belonging to
an equilibrium ensemble.

Call this a Monte Carlo ensemble;
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more of blah ... blah

a Monte Carlo ensemble is a subset of a canonical
ensemble

Let the size of the ensemble be N

In general, for a given thermodynamic property, there
corresponds, in statistical mechanics, a random variable

random because the value of the property fluctuates
from one micro state to another.

in a sense we are looking at a private property of a
micro state. e.g.

energy,
magnetization of a micro state of an Ising spin
system
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Estimate the thermodynamic property of the system by
taking a simple arithmetic average over a Monte Carlo
ensemble

Exception to the above rule are thermal quantities like
entropy and free energy

Entropy is not defined for a microstate.

entropy is not a private property of micro state

it is a social or collective property

To estimate entropy we need
to count the number of micro states of a micro
canonical ensemble or
to sum the quantity pi ln pi over micro states (i) of a
closed system
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Monte Carlo Then and Monte Carlo Now

to this end we need special techniques for calculating
entropy and free energy

This provides us with a natural categorization of Monte
Carlo methods as:

Monte Carlo - Then :
Boltzmann Monte Carlo methods
Methods that help sample from canonical ensemble
Boltzmann ensembles are physical
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Monte Carlo - Now :
Non-Boltzmann Monte Carlo
Methods that help sample from an entropic
ensemble
Non-Boltzmann ensembles are not physical
ensembles
however physical quantities can be calculated by
suitable un-weighting-re-weighting techniques
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Monte Carlo error bars

The Law of Large Numbers guarantees that asymptotically
(N → ∞) the Monte Carlo estimate converges
(statistically) to the true value.

In fact the Central Limit Theorem helps us quantify this
convergence in terms of statistical error ǫ

ǫ = one-sigma confidence interval

ǫ is given by the standard deviation calculated from the
Monte Carlo ensemble divided by square root of the
size of the Monte Carlo ensemble.

Such error estimates are valid only
when the elements of the Monte Carlo ensemble are
independent of each other and
the property under investigation has a finite variance
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Critical Slowing Down

for systems close to second order phase transition
successive micostates sampled are correlated;

the dynamics become extremely slow

the convergence of the Monte Carlo results take
prohibitively long times

Called critical slowing down

Cluster algorithms help overcome problems of critical
slowing down

near first order phase transition we have problems of
large energy barriers

the phase space splits into two regions separated by
the energy barrier
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Super-critical slowing down

for all practical purposes these two regions do not
communicate with each other: Non-ergodic

the dynamics slows down - super-critical slowing down

in glassy systems the phase splits into several non
ergodic regions

entropic sampling overcomes super-critical slowing
down

what about entropy barriers ?

a few studies .... like Frontier sampling and JSM
techniques have been proposed;

these are however ad-hoc;

overcoming entropy barriers remains still an open
problem
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MONTE CARLO - THEN : Metropolis Rejection

Markov Chain Monte Carlo : Metropolis Algorithm

start with an initial microstate C0 and generate a
Markov chain of microstates:

C0 → C1 → C2 → · · · → Cn · · ·

as described below

Let the current microstate be Ci and its energy Ei

Carry out local changes in Ci and consruct a trial
microstate Ct;

let the energy of the trial microstate be Et

If Et ≤ Ei then accept the trial state an set Ci+1 = Ct
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Metropolis Rejection

if Et > Ei, calculate

p = P (CT )/P (Ci) = exp [−β(Et − Ei)]

then

Ci+1 =





Ct with probbility p

Ci with probabiity 1 − p

the asymptotic part of the Markov chain contains
microstates belonging to canonical ensemble at the
chosen temperature

Generate a large Monte Carlo sample of microstates
taken from the end of the Markov chain
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Monte Carlo estimates of mean and its statistical error

Let N be the size of the Monte Carlo ensemble and

O denote the property of interest

Monte Carlo estimate of the average of O and the
associated statistical error are given by

ON =
1

N

N∑

i=1

O(Ci) ±

1
√
N

√√√√ 1

N

N∑

i=1

O2(Ci) −
(

1

N

N∑

i=1

O(Ci)

)2
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Metropolis, balance and detailed balance

Metropolis algorithm obeys balance condition:
this guarantees asymptotic convergence to
equilibrium

In fact Metropolis algorithm obeys a stricter detailed
balance condition:

this assures asymptotic convergence to the desired
equilibrium canonical ensemble at the prescribed
temperature

More importantly Metropolis algorithm generates
(asymptotically) reversible Markov chain

equilibrium state does not recognize forward time
from its reverse
equilibrium state is time reversal invariant
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Monte Carlo - Now : the g ensemble

Entropic sampling: Let g(E) ≥ 0 ∀ E be a given
function of energy

we take the probability of a micro state as

P (C) ∝
1

g(E(C))

Let Ci of energy Ei be the current microstate and Ct of
energy Et be the trial microstate constructed by making
local changes in Ci.

if g(Et) ≤ g(Ei) accept the trial state and set
Ci+1 = Ct
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otherwise calculate

p =
P (Ct)

P (Ci)

=
g(Ei)

g(Et)

Then

Ci+1 =

{
Ct with probability p

Ci with probability 1 − p

the asymptotic part of the chain would contain
microstates that belong to what we call as g-ensemble.
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Entropic Sampling

1/g(E) plays the role of Boltzmann weight;

Notice : g(E) is independent of temperature.

in a sense the g-ensemble is multi canonical

Canonical partition function can be written as

Q(β) =

∫
dE D(E) exp(−βE)

where D(E) is the density of (energy) states.

Replace the Boltzmann factor exp(−β E) by 1/g(E).
We get,

Qg =

∫
dE

D(E)

g(E)
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entropic sampling: flat histogram

If g(E) = D(E) then the probability is same for all
energies.

the ensemble that results from this choice of g(E) is
called entropic ensemble

all energy regions are equally represented in the
entropic ensemble of micro states

The histogram of energy of visited microstates is flat.

there are no energy barriers

the system does a simple random walk in the energy
space

But note: we do not know D(E) before hand
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convergence of g to D

In entropic sampling the following strategy is employed
start with a guess of g(E);
if you know nothing of D(E), assume g(E) = 1 ∀ E

generate a certain number of microstates and build a
histogram h(E).
update g(E) for all E as follows.
g(E) = g(E) × h(E) if h(E) 6= 0.
If h(E) = 0 then do not change g(E)

employ the updated g(E) in the next stage, during
which a fresh histogram is built.
after a few stages of iteration g(E) would converge
to D(E).
The convergence can be monitored by looking at the
flatness of the histogram.
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Wang - Landau algorithm

A Variant of entropic sampling is the Wang-Landau
algorithm

g(E) is updated continuously.

when the visited micro state is of energy E then
g(E) = g(E) × α where α is the Wang-Landau factor

α = e in the first iteration; in the second iteration it is
taken as the square root of e;

this square root rule is applied to successive iterations.

Asymptotically α → 1 when there occurs no change in
g(E).

g(E) converges to the D(E)
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Wang - Landau algorithm

the converged g(E) gives the microcanonical entropy
from which all the required thermodynamics properties
can be obtained

alternately the converged g(E) is used in a production
run; an entropic ensemble is generated; the required
properties at any temperature can be calculated by
suitable un-weighting -cum-re-weighting techniques.

〈O(β) 〉 =
1

N

N∑

i=1

O(Ci) g(E(Ci)) exp[−βE(Ci)]
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Free Energy

Landau Free energy in Statistical Thermodynamics

F (T ) = −kBT ln

[
∑

C

exp(−β E(C))

]

In the above the sum runs over all micro states of the
closed system at T .

For an equilibrium system, the sum is overwhelmingly
dominated by the contributions from the micro states of
energy E = 〈E〉 = U(T ).

The contributions from micro states having energies
E 6= U(T ) are negligibly small.
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Hence we can write,

F (T ) = −kBT ln

[

∑

C

δ (E(C) − U(T )) exp(−β E(C))

]

where the Krobecker δ - function is given by

∆(η) =





1 if η = 0

0 if η 6= 0

the sum is taken over those micro states having energy
U(T )
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then we have

F (T ) = −kBT ln
[
Ω̂(U) exp(−β E(C)

]
,

where Ω̂(U) is the number of micro states of the closed
system with energy U(T ).

F (T ) = −T (kB ln Ω̂) + (−kBT ) (−β U) = U − TS

this is indeed a familiar expression for free energy from
thermodynamics
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Landau - Free energy

Landau generalized the above expression for free
energy to non-equilibrium systems by writing

F (T, E) = −kBT ln
∑

C

δ
(

E(C) − E
)

exp [−β E(C)]

In the above if we choose E = U(T ) we get equilibrium
free energy;

If we choose E 6= U(T ) we get Landau
(non-equilibrium) free energy at the chosen energy.

Thus the non-equilibrium Landau free energy is
independently a function of energy and temperature.
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Free energy - Thermodynamics

Landau-Free energy : Thermodynamics Point of View:

the free energy of a closed system is given by

F (T, · · · ) = U(S, · · · ) − T (S, · · · )S

T (S, · · · ) =
∂U

∂S

)

···

Thus F is a function of T .

We can define microcanonical free energy, relevant for an isolated system and express
F as a function of U .

F (U) = U − T ( S(U) )S(U)

But F can not be expressed as a function of both T and U independently for an
equilibrium system

If you specify U then T is automatically fixed. If you specify T then U gets fixed
automatically.
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Landau and Landau - Ginzberg free energy

Landau asked: what is the penalty in terms of excess
free energy we require to invest if we want to keep the
system in a "non-equilibrium state" at a given T with
energy different from equilibrium energy U(T ).

Such a "non-equilibrium free energy" is called Landau
or Landau-Ginzberg Free energy

F (T, E) = E − TS(E)

where S(E) is microcanonical entropy:
S(E) = kB lnD(E). Here D(E) is the density of
energy states.

If E = U(T ) we get the equilibrium free energy of the
closed system
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Landau free energy from Wang-Landau algorithm

Wang-Landau Monte Carlo gives directly the density of
states, logarithm of which is proportional to
microcanonical entropy.

Hence these techniques permit calculation of
Landau-free energy directly

F (T, E) = E − TkB ln g(E)

When E = 〈E〉 = U(T ) we get equilibrium free energy
at the given temperature

When E 6= 〈E〉 = U(T ) we get non-equilibrium
Landau-free energy

We illustrate this by considering Potts spins on a two
dimensional square lattice
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Potts Spin model

each Potts spin interacts with its four nearest
neighbours;

we impose periodic boundary conditions

the interaction energy of a pair of Potts spins at nearest
neighbour sites i and j is given by

Ei,j = −J δ(Si, Sj)

Si = 1, 2, · · · q for a q− state Potts spin model.

δ(S − i, Sj) is the usual Kronecker delta which equals
1 when Si = Sj and zero otherwise.
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q = 8: Potts spin model : First order Phase Transition
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Figure 1: F versus E for various T . 16 × 16 square lattice: Transition is first order
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q = 3: Potts spin model: Second order Phase Transition
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Figure 2: F versus E for various T 16 × 16 square lattice: Transition is second order
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Good bye then .....

and · · ·

Thanks
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