
One Week Faculty Development Programme on
Engineering Physics

(19 - 24, August 2013)

Chaitanya Bharathi Institute of Technology,
Gandipet, Hyderbad 75

Statistical Mechanics

K. P. N. Murthy

School of Physics,
University of Hyderabad

23 August 2013

K P N Murthy (University of Hyderabad) Statistical Mechanics 23 August 2013 1 / 87



Acknowledgements

Thanks to

Dr. N. Amrutha Reddy,

Professor and Head,

and

Dr. B. Linga Reddy,

Associate Professor,

Department of Physics,
Chaitanya Bharathi Institute of Technology,
Gandipet, Hyderabad

for the invitation

K P N Murthy (University of Hyderabad) Statistical Mechanics 23 August 2013 2 / 87



Plan of the TALK

I am going to talk about

the aim of statistical mechanics

the methods of statistical mechanics based on Gibbs’ ensembles and

if time permits some recent developments.

Whenever and wherever required, I shall introduce the relevant concepts of
thermodynamics

Please interrupt me if and when you do not follow what I am saying
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Aim of Statistical Mechanics

to synthesize macroscopic behaviour from microscopic behaviour.

micro-MACRO synthesis

There are two issues:

The first is simple :

Statistical mechanics helps us calculate macroscopic properties from
the properties of the microscopic constituents and their interactions
e.g. predict the properties of water like its density, pressure, heat
capacity, latent heat of fusion, latent heat of evaporation, at what
temperature does it freeze, at what temperature does it boil, etc. -
from the properties of water molecules and the knowledge about how
the water molecules interact with each other.
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time asymmetric macro from time symmetric micro

The second is rather ambitious

the second agenda is to derive the time asymmetry in the
macroscopic behaviour - arrow of time given by the direction of
increasing entropy - from the time symmetric or time-reversal
invariant microscopic equations - of Newton, of Schrödinger, of
Heisenberg, of Maxwell, of Einstein - special relativity etc.

statistical mechanics has been eminently successful in the first agenda.

In fact this is precisely why, we are studying statistical mechanics

statistical mechanics has not yet succeeded in the second agenda;

this is the reason why statistical mechanics remains still interesting
and challenging.

if time permits I shall talk about the issues concerning
the second agenda toward the end.
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What is a micro world ? and what is a MACRO world ?

micro-MACRO synthesis

MICROSCOPIC CONSTITUENTS MACROSCOPIC OBJECT

neutrons and protons nuclei

nuclei and electrons atoms and molecules

atoms and molecule solids, liquids and gases

atomic magnets ferromagnets

monomers polymer chain

amino acids protein molecule

sun, planets and satellites solar system

solar systems galaxy

galaxies universe

men, women children and monkeys society
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on micro world

Micro world obeys

Classical mechanics : your teacher would have talked about

Newton’s equations of motion
Euler-Lagrange equations
Hamilton - Jacobi equations

jargon
position; momentum; constraints; Lagrangian;
degrees of freedom; potential; Hamiltonian; force; dynamical trajectory;
phase space; Poisson bracket; etc.
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more on micro world

In Quantum Mechanics, you would have learnt of

◦ Schrödinger equation
◦ Heisenberg equation

jargon
wave function; quantum numbers; Hermitian
operators; eigenvalues; eigenvectors; uncertainty principle;
commutators; etc.

Electrodynamics • Relativity • etc.

What are the principal and general characteristics
of a microscopic law ?
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micro world : determinism and time-reversal invariance

DETERMINISM

and

TIME REVERSAL INVARIANCE.

Determinism

Entire past and the entire future is frozen in the present

know of ~x(t = t0) and ~p(t = t0); then the classical mechanics
machinery shall tell you ~x(t) and ~p(t) for all t < t0 and for all t > t0.
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Determinism and time-reversal-invariance - an example

Solar system is a good example:

specify the positions and momenta of all the
planets at any instant of time, say now.
Newton’s equations will tell us where all the planets shall be, an year
from now; or where they were some four thousand years ago.

Time Reversal Invariance

Microscopic laws do not distinguish the future from the past;
the microscopic equations are invariant under the transformation of

t → −t.
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How do we know of time-reversal-invariance ?

We can not reverse the time in the laboratory! Then how do we
implement time reversal?

start at time say zero; move to time say t;
reverse the momentum; move from time t to 2t;
reverse the momentum.

if you arrive at the same phase-space point you started with,
then the dynamics is time-reversal invariant.
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time reversal invariance .....

Run the solar system forward for an hour; then run it backward for an
hour; the planets will all end up exactly where they started.

Time reversal invariance has a more general and
subtle meaning: Technically,

Newton’s equations are good in
either directions of time

take a movie of classical mechanical trajectory;

screen the movie in the reverse

You will not find anything funny.
what you see will be a perfectly valid trajectory
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charge in an electric field

Motion of a charge q in an electric field

~E = −∇φ

m
d2~r

dt2
= q~E (~r)

if ~r(t) is a solution of the above equations, then so is ~r(−t)
the equations are second order in time; the two changes of sign coming
from t → −t cancel.

In other words, take a movie of the dynamics of the charge obeying
the above equations of motion and screen it in the reverse; what you
see is also a physically allowed dynamics.
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moving charge in a magnetic field

What happens if there are magnetic forces?

m
d2~r

dt2
= q~E (~r) +

q

c

d~r

dt
× ~B(~r)

the equations of motion include a first order time derivative which
changes sign under time reversal.

e.g. in a constant magnetic field, the sense of circular motion (clock
wise or anti-clock wise) is determined by the nature of the charge and
not by the initial conditions; hence the time-reversed motion will be in
the opposite sense.

However, if we make the replacement of ~B → −~B we restore time
reversal invariance.
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on macro world

Macro World

the world we see around; the world of trees; of rocks; of houses; of
tables; of chalk pieces; of walls; of seas; of beer; etc.

these objects have microscopic constituents;

these microscopic constituents are usually completely hidden from our
view.

indeed, when we study an object at a particular length scale, we can
ignore its structure on smaller length scales by averaging over these
length scales. e.g. when we study solids we ignore the nuclei of the
atoms that make up the solid.
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Laws of the macro world : THERMODYNAMICS

First law : dU = d̄ q + d̄ W
Second law : dS ≥ 0

jargon:

temperature; pressure; volume; energy; entropy; chemical potential;
intensive variables; extensive variables; equation of state; phase
diagrams; heat capacity; etc.

What is the principal character of a macroscopic behaviour ?

Macroscopic behaviour is not time reversal invariant.

There is a definite direction of time ...

the direction of increasing entropy.
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Can you undo what you have done ?

Question: When do we say, an act can be reversed ?

Answer: When we can undo all the consequences of the act and
restore everything as they were before the act.

you buy a shirt from a shop;
back at home, you discover your wife does not like it;
the next day you go to the shop and return the shirt;
the shop keeper takes the shirt back and returns you the money.
You have undone whatever you did.
We say the act of buying a shirt from the shop is reversible

so what ?
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How do we detect irreversibility ?

when something is reversible, then, the reversed behaviour will also
happen as often as the forward behaviour;

you will find in the shop, people buying shirts - the forward act

you will also find in the shop, people returning the shirts and getting
back their money - the reverse act

When we observe often, a phenomenon as well as its reversal, then we
say the phenomenon is REVERSIBLE.

breaking of a glass mug is something we often see;

its reversal - broken glass pieces of the mug assembling to form a mug
- we do not see at all - at least I have not seen

hence breaking of a glass mug is an irreversible phenomenon

most of the macroscopic phenomena are irreversible
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time asymmetry of the macro world : another way of
looking at it

take a movie of macroscopic time evolution; e.g. a glass mug falls
down from the top of a table and breaks into pieces. (this is a typical
scenario we often bear witness to.)

screen the movie in reverse;

you will immediately know;

the reverse looks blatantly funny.

Have we ever seen broken pieces of glass assemble spontaneously into
a tumbler and the tumbler pops up and sits nicely on the table?

Are we likely to see such a behaviour ever in the future?
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Omar Khayyam (1048 - 1131)

The Moving Finger writes;
and, having writ, moves on
nor all your Piety nor Wit

Shall lure it back
to cancel half a Line,
Nor all your Tears

wash out a Word of it.

Omar Khayyam (1048-1131)
Scientist-Poet, Persia (now Iran)

Time reversed macroscopic behaviour is never seen.

Time reversed microscopic behaviour is often seen.
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micro-MACRO dichotomy

The two pillars of theoretical physics,

Newtonian mechanics
and
thermodynamics

seem to stand in contradiction.

WHY ?

How do we comprehend this micro-MACRO dichotomy?

Answer: Through the machinery of Statistical Mechanics

Hence without much ado, let us get on with the task of learning the
methods of statistical mechanics.
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Why are we uncomfortable with Statistical Mechanics

Normally, we resort to statistics only

when we want to hide our ignorance
when we want to hide our inability make predictions

for example when a coin is tossed we can not tell whether it will show
up Heads or Tails

May be, e can argue that in principle, Newton’s equations should help
us make a correct prediction

In principle, we can write down Newton’s equations accounting for all
the forces acting on the coin, solve the equation, may be numerically,
and arrive at the outcome of the toss

such an enterprise feasible : is it feasible ?
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unpredictability - is it an inherent property ?

may be ... certain phenomena are inherently unpredictable

perhaps, the outcome of the toss of a coin is inherently unpredictable
- that is why we say

” as random as the toss of a coin”
the outcome perhaps depends sensitively on several factors like

the torque and force applied,
the air friction,
the wind flow,
the mass distribution in the coin
etc

we may not know these factors adequately precisely to make a
reasonable prediction

may the dynamics enhances the errors in the initial conditions
exponentially, thus destroying completely our ability to make
predictions, despite the evolution being deterministic
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chaos implies unpredictability

With the advent of nonlinear dynamics and chaos,
we now know, that
determinism
does not necessarily imply
predictability

(non-linear) chaotic dynamical systems are deterministic;

but they evolve unpredictably

In the light of the above, we take a simple attitude that the result of
a toss, can be Heads or Tails with 50-50 probability
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microstate

Consider an experiment - real or imagined which has more than one
outcome

Example - 1

toss a coin
it has two out comes : Heads - H and Tails - T
these are the microstates of a single coin
the set {H,T} is called microstate space; mathematicians call it
sample space

Example - 2

toss a dice
it has six outcomes : 1 - 6
these six outcomes constitute a microstate space or sample space
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microstate : a few more examples

Example - 3

toss a coin twice (independently) or equivalently toss two (identical)
coins (independently)
microstate space or sample consists of four outcomes :
{(HH), (HT ), (TH), (TT )}

Example - 4

toss N (independent and identical) coins
How many outcomes are possible ? Answer : 2N

each outcome is a string of symbols H and T
e.g. a string like (HHTHHHTTHHHTT ) is an outcome when N = 13.
There are 213 = 8192 microstates for the experiment of tossing 13
coins (identical and independent)
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microstate : yet another example

Example - 5

Consider a gas in a container
the gas consists of molecules of the order of say 1025, in number
Each molecule can be specified by giving six numbers : three for its
position and another three for its momentum.
there are N molecules. Hence we require a string of 6N numbers to
specify a microstate of the system at any given time.
all possible strings of 6N numbers constitute the microstate space for
the system
we can view it as an experiment of organizing N molecules in a
container with some constraints (on energy, for an isolated system, on
temperature for a closed system or temperature and chemical potential
for an open system)
there are several possible outcomes, of the experiment,
which constitute the microstate space
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MACRO state

Consider a subset of the micro state space

all the microstates belonging to this subset have the same
macroscopic properties

Consider tossing of three coins.
there are eight microstates
consider microstates with two Heads (and hence one Tails)
there are three microstates having this macroscopic property
why do I call this a macroscopic property ?
It is because this property does not depend on the microscopic details -
like whether the first coin is Heads, the second is Heads and the third
is Tails.
This property depends on the macrostate in which there are two Heads
(it doesn’t matter which two of the three coins show up Heads) and
which one shows up Tails
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Tossing of N coins

Let n denote the number of Heads in a toss of N coins.

n can take values from 0 to N.

Thus there are 2N microstates and N + 1 macrostates.

Let Ω(n;N) denote all the microstates having n Heads (and hence
(N − n) Tails

Let Ω̂(n;N) denote the number of microstates associated with the
macrostate n, where 0 ≤ n ≤ N.

In other words Ω̂(n;N) is the cardinality of the set Ω(n;N).

It is easy to derive an expression for Ω̂(n;N), see next slide.
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Derivation of an expression for Ω̂(n;N)

Take a single microstate ω ∈ Ω(n;N)

From this single microstate we can produce n! permutations by
permuting n Heads;

from each of the n! permutations, we can produce (N − n)!
permutations, by permuting (N − n) Tails.

We can carry out the above exercise, for each microstate belonging to
the set Ω(n;N)

Thus we can produce Ω̂(n;N)n!(N − n)! permutations.
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Ω̂(n;N)

it is easy to see

Ω̂(n;N) n! (N − n)! = N!

thus we get,

Ω̂(n;N) =
N!

n! (N − n)!

First we verify,

N∑
n=0

Ω̂(n;N) =
N∑

n=0

N!

n! (N − n)!
= 2N
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Probability of a macrostate

Let us say all the microstates are equally probable

in a coin tossing experiment, this statement is obvious if all the coins
are fair coins
for a single toss, Heads and Tails are equally probable
hence, for N tosses, all the 2N microstates are equally probable

Physicists have a fancy name for it : ERGODICITY

Let P(n;N) denote the probability that the macrostate is n

then we have,

P(n;N) =
Ω̂(n;N)∑N
n=0 Ω̂(n;N)

=
1

2N
N!

n!(N − n)!
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What is the macrostate we observe ?

The important question is when we carry out measurements on the
system what is the value of the macroscopic property we will observe

Imagine N coins jumping up and falling flat i.e. get tossed, once in
every 10−15 seconds.

We are going to observe the system for say one microsecond : 10−6

seconds.

During the observation time the system would have visited some 109

microstates.

what we observe as the macroscopic property n is a quantity averaged
over 109 microstates.

we call this time average

Let us now talk about ensemble average....

What is an ensemble ?
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Ensemble : Maxwell’s mischief

How does a mathematician calculate the average of a random variable
n which can take values n1, n2, · · · with probabilities p1, p2, · · · ?

〈n〉 =
∑
i

ni pi

How does a physicist calculate average of a quantity ?

for example, I want to know the average height of a person in this
room;

how do I calculate it ?

Find the height of every person;

let us say there are N persons in this room;

let hi denote the height of the i-th person

〈h〉 =
1

N

N∑
i=1

hi
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Maxwell’s ensemble

take the sum of the heights of all the persons in this room;

divide the sum by the number of persons in this room;

what you get is the average height of a person in this room; simple

Maxwell thought that this is what a physicist would understand as
average and this is how he would calculate it

He had a poor opinion about physicists’ ability to comprehend the
average as defined by mathematicians, involving

random variable n,
the possible values of n denoted by n1, n2, · · · ,
the probabilities pi , p2, · · · and
sum of the product nipi over all i
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Construction of an ensemble, knowing the probabilities

Consider tossing of a coin

the microstate space is {H, T};
Let P(H) = 3/4 and P(T ) = 1/4 : the coin is biased

Let X (ω) be random variable, that attaches +1 to H and −1 to T

〈x〉 = (+1)× 0.75 + (−1)× 0.25 = +0.5

A possible ensemble is {H,H,H,T}
Ensemble average is 〈x〉 = (+1 + 1 + 1− 1)/4 = 0.5

Thus an ensemble is a collection of microstates of the system (i.e.
outcomes of the experiment)

each microstate is repeated as often in the ensemble as to reflect its
probability.
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size of an ensemble
In the above example the size of the ensemble is 4. H occurs three
times because the probability of H is 3/4; Tails occurs only once since
P(T ) = 1/4

Of course {H,T ,H,H,H,T ,H,H} is a possible ensemble because
P(H) = 6/8 = 3/4 and P(T ) = 2/8 = 1/4

The size of the microstate space is fixed by the nature of the system
or the nature of the experiment

the size of the ensemble is arbitrary; usually we take the size of the
ensemble as large as possible to ensure that each microstate is
represented in the ensemble in proper proportion to reflect its
probability.

if we have a fair coin, then P(H) = P(T ) = 1/2

then the sample space {H, T} itself is a candidate
for an ensemble.
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Calculating probabilities from the ensemble

we are given the ensemble; for example let us say all the N persons
present in this room constitute an ensemble

we calculate probability distribution of the heights as follows

Let us say the height can vary from say 4.5 feet to 6.5 feet.

we divide this range into a set of intervals each of width say ∆h

for example we can take ∆ h = 0.1 which gives twenty equal intervals

we find how many persons have heights in the i-th interval: ni

then pi = ni/N, where N = n1 + n2 + · · ·
we will construct an ensemble of closed systems on physical grounds and

from this ensemble we shall calculate the probability for a closed system to

be in any of its microstate.
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How does a mathematician calculate average ?

Let us return to the tossing of N fair coins and the determination of
〈n〉.
Following mathematicians, we can calculate the average by explicitly
summing the quantity n × P(n;N), over all possible values the
random variable n can take; Note n = 0, 1, 2, · · · n.

〈n〉 =
N∑

n=0

nP(n,N)

=

∑N
n=0 n × Ω̂(n;N)∑N

n=0 Ω̂(n;N)

=
1

2N

N∑
n=0

n
N!

n! (N − n)!

=
N

2
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Ensemble average

We can get the same answer by constructing an ensemble of
microstates

Let the size of the ensemble be denoted by M;

The size of the ensemble is such that a microstate is repeated as
often in the ensemble as to reflect its probability

for example M can be taken as the inverse of the probability of the
rarest microstate;
in the experiment of tossing N fair coins the ensemble size can be
taken as 2N , since all microstates are equally probable
instead if P(H) = 0.1, then the probability of all the N coins showing
up H is the smallest and equals (0.1)N ;
Inverse of this can be taken as the size of the ensemble
thus M = 10N
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... ensemble average

Let ni be the value of the macroscopic property of the i th microstate
of the ensemble

Ensemble average of n is given by

〈n〉 =
1

M

M∑
i=1

ni

In Markov Chain Monte Carlo methods we construct a sample
microstates by sampling from the known equilibrium probability
distribution of the system; the Monte Carlo sample is a subset of the
ensemble; we calculate averages over the Monte Carlo sample
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Maximum entropy state

Let the N coins be fair coins

we can attach an entropy to each macrostate given by the logarithm
of the number of microstates assoicated with it

all microstates are equally probable

S(n) = kB ln Ω̂(n;N)

= kN ln

(
N!

n!(N − n)!

)
We can say that the value of n for which S(n) is maximum shall be
the value observed in experiment;

let us denote this value as n̂

It is readily seen n̂ = 〈n〉
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most probable value

Since for this problem, we know exactly the probability distribution of
the random variable n, we can ask the following question

What is the probability P, that n takes a value out side a small
interval around 〈n〉 = n̂ = N/2 ?

Let us take the interval as

N

2
− ε

N

2
,

N

2
+ ε

N

2

where ε is a small fraction.

take ε = 0.001
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fluctuations about the most probable value

N P
104 0.317

105 0.002

106 1.5× 10−23

108 2.7× 10−2174

When the number of coins is a hundred million (108) the probability
that the random variable n - the number of Heads, will take a value
within ±1% around N/2 is very close to unity; it is 1− 2.7× 10−2174

notice 108 is a small number for Avagadro

Avagadro handles numbers of the order of 1023 and above

Imagine the situation when we have 1023 to 1025 coins.

in macroscopic systems we deal with this kind of
number of atoms or molecules
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microcanonical ensemble

for a single coin, there are only two microstates

for a single atom, the number of microstates is very large, as we shall
see soon

it is precisely because of this a macroscopic system has a definite
value for its macroscopic property, despite statistics or randomness
employed for its description

This is precisely the reason that statistical mechanics is able to
predict macroscopic ( thermodynamic) properties.

a typical macroscopic object: a glass of water: it contains nearly 1025

water molecules.

each molecule for complete specification requires three position and
three momentum coordinates; in the spirit of coarse graining we
ignore the structure of a molecules and the structure of its
constituents.
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Ergodicity

we need therefore ∼ 6× 1025 numbers to specify the macroscopic
object.

the system at a microscopic level is indeed hyperactive; the molecules
are incessantly in motion;

the system is switching from one microstate to another, all the time;

each molecule moves as per the diktats of the Newtonian mechanics.

the entire system of N molecules is specified by a point in a 6N
dimensional phase space.

the point traces out a trajectory in the phase space as per Newton’s
laws.

consider an isolated system in equilibrium

let us say that we are assured that the (isolated
and equilibrium) system visits all the regions of the phase space
accessible to it ‘ uniformly ’ ;
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micro canonical ensemble averaging

in other words the system spends equal duration of time in equal
regions of the phase space.

experimentally measured macroscopic property can be considered as a
time average over the phase space trajectory traced by the system
during a measurement.

then, we can completely ignore the dynamics and calculate a
macroscopic property as an average over a static micro canonical
ensemble (micro states) - with all the microstates being equally
probable.

this is called averaging over a microcanonical ensemble.
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Equilibrium system is stable

notice that despite tremendous activity at a microscopic level, the
macroscopic properties of the equilibrium system remain robust and
unchanging.

water boils at 100 degree Celsius at standard
pressure.
ice melts at zero degree Celsius.
pressure times volume remains the same for a given quantity of an ideal
gas at constant temperature.
mercury expands upon heating.
when two bodies come into thermal contact, the hotter body cools and
the colder warms up until both attain the same temperature.
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Why is an equilibrium system, stable ?

a few macroscopic descriptors like volume V , pressure P, entropy S ,
temperature T , density ρ etc. are adequate to describe the
macroscopic state of the system.

what is the reason for the observed robustness of a macroscopic
behaviour ?

let us say you are determining a macroscopic property O, of a system
by observing it over a duration of time say τ ;
what you measure can be thought of as an average of the macroscopic
property over the N microstates visited by the system during the
experimental observation time τ . Let us denote it by ON ; it is quite
clear ON is a random variable.
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Fluctuations are inversely proportional to system size

if N is very large and if (we assume that) the microstates visited are
all independent of each other, then ON has a Gaussian distribution;
this is a consequence of the Central Limit Theorem.

more importantly, the variance of the Gaussian distribution is of the
order of the inverse of N and hence is small for large N;

since N is invariably large, we find a macroscopic property robust and
unchanging with time.

e.g. pressure is average momentum transferred to the wall (of the
container) by the colliding molecules of the fluid. This is the simplest
of micro-macro connections.

in fact statistical mechanics establishes several such micro-macro
connections.
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The Central Limit Theorem

{Xi} are identically distributed independent random variables with
mean µ and finite variance σ2.
Let ρ(x) denote its probability density function.

The characteristic function of X is

ΦX (k) =

∫ ∞
−∞

dx exp[+ikx ]ρ(x)

= exp

[
ikµ− k2

2
σ2 +

∞∑
n=3

(ik)n

n!
ζn

]

In the above ζn is the n-th cumulant of X ;

ζ1 = µ ; ζ2 = σ2.
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Central Limit Theorem .... continued

Y =
1

N
(X1 + X2 + · · ·+ XN)

The characteristic function of the random variable Y is:

ΦY (k) =

[
ΦX

(
k → k

N

)]N
= exp

[
ikµ− k2

2

σ2

N
+
∞∑
n=3

(ik)n

n!

ζn
Nn−1

]
∼

N→∞ exp

[
ikµ− k2

2

σ2

N

]
The above is a Gaussian whose Fourier inverse is also a
Gaussian with mean µ and variance σ2/N.
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Central Limit Theorem ... Continued

For N →∞, we have strictly

ΦY (k) = exp[iµk]

whose Fourier inverse is
δ(y − µ);

Y is not any more random; it is deterministic;

The macroscopic variable is robust indeed.

For N adequately large, the fluctuations of Y is inversely proportional to√
N and hence is small.
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micro - MACRO connection : Statistical entropy

Ludwig Eduard Boltzmann

(20 Feb. 1844 - 5 Oct. 1906)

S = kB log(Ω̂)

S is entropy

kB is called the Boltzmann constant:
1.381× 10−23 Joules per degree Kelvin or

8.671× 0−5 electron-volt per degree Kelvin
Ω̂ is the number of microstates

accessible to the system
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Toy Model : One particle in a box with two portions

Consider the following experiments:

take a particle and place it in a box; left or right portion.

Question : How many ways can you do this?

Answer : 2; Ω̂ = 2; S = kB log 2
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Toy model: two particles in a box of two portions

take two particles (non interacting) and place them in the box independently.

Question : How many ways can you do this?

Answer : 4; Ω̂ = 4; S = 2 kB log 2
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Toy model : N particles in a box with two portions

take N particles and place them in the box independently;

Question : How many ways can you do this?

Answer : 2N ; Ω̂ = 2N ; S = N kB log 2

In the above experiments the box was divided into two equal parts.
Consider an experiment of
placing N particles independently in a box divided into 3 equal parts.

Question : How many ways can you do this?

Answer : 3N ; Ω̂ = 3N ; S = N kB log 3
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toy model: N particles in a box of V /ε portions

Consider an experiment of placing N molecules independently in a box
divided into V /ε equal parts, where ε is the volume of the tiny cube

Question : How many ways can you do this?

Answer : Ω̂ =

(
V

ε

)N

S = kB log Ω̂ = NkB logV − NkB ln ε

∂S

∂V
=

NkB
V

=
P

T
(see box below )

P V = N kB T

We have derived the ideal gas law!
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S and dS

S ≡ S(U,V ,N)

dS =
∂S

∂U

)
V ,N

dU +
∂S

∂V

)
U,N

dV +
∂S

∂N

)
U,V

dN

=

(
1

T

)
dU +

(
P

T

)
dV +

(
− µ

T

)
dN

What more? Consider a thermodynamic process in which only the
volume changes and all other thermodynamic variables remain the
same. We have,
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dS for the toy model

S(V ) = kBN lnV − NkB ln ε

dS =
∂S

∂V
dV =

kBN

V
dV

Let us say that the infinitesimal change in volume has occurred because of a

quasi-static reversible isothermal process during which the system draws

d̄ qR of energy in the form of (reversible) heat from the heat reservoir.

We have PdV = d̄ qR , which implies that,

dS =
NkB
PV

d̄ qR

Replace PV by NkBT (ideal gas law which we have already derived) in the

above expression.
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Boltzmann entropy and Clausius’ entropy are equivalent

We get,

dS =
d̄ qR
T

which is precisely the definition for change in entropy given by
Clausius.

Thus Clausius’ entropy readily follows from
Boltzmann’s entropy.

Boltzmann gives an expression for the absolute entropy. Clausius
gives an expression for change in entropy.

Both Boltzmann entropy and Clausius’ entropy are defined for an
equilibrium system.
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Gibbs’ paradox and Boltzmann counting

We derived all the above expressions starting from the following,

Ω̂ = VN ; S = NkB logV

Is this entropy extensive?
No; it is not: Check this out
called Gibbs’ paradox.
What should we do to make it extensive ?
Divide Ω̂ by N! ; the resulting entropy
is extensive.
This was suggested by Boltzmann for taking care of indistinguishability.
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Micro Canonical ensemble

The correct full expression for Ω̂ as a function of U, V and N is given
by the Sackur-Tetrode equation,

Ω̂(U,V ,N) = VN 1

h3N

1

N!

(√
2πm

)3N U3N/2

Γ( 3N
2 + 1)

h3N is the (phase space volume) unit we use to measure the volume
of the 6N dimensional phase space;

this choice of unit volume is inspired by the Heisenberg uncertainty
principle: ∆x∆p ≥ h

We take the ‘ minimum uncertainty ’ volume of the phase space,∏N
i=1

∏3
k=1 ∆x

(k)
i ∆p

(k)
i = h3N

Γ(y) is the usual gamma function defined by,
Γ(y) =

∫∞
0 exp(−x)xy−1dx ; Γ(ν + 1) = ν !
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Boltzmann-Gibbs-Shannon Entropy

Josiah Wilard Gibbs (1839 - 1903)
Claude Elwood Shanon (1916 - 2001)

Consider an isolated system; let ΩIS denote the set of all possible
microstates accessible to the system; let Ω̂IS denote the number of
microstates.

S = kB log Ω̂IS

= kB
1

Ω̂IS

Ω̂IS log Ω̂IS

= −kB
Ω̂IS∑
i=1

1

Ω̂IS

log

(
1

Ω̂IS

)
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Boltzmann-Gibbs-Shanon Entropy

This can be written in more suggestive form,

S = −kB
Ω̂IS∑
i=1

pi log pi

where, pi = 1/Ω̂IS ∀ i :

‘all microstates are equally probable ’

We can generalize and say that the above gives an expression for
entropy even when the probabilities are not the same for all
microstates. thus we get the Boltzmann-Gibbs-Shanon entropy.
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Ensemble −→ probabilities

Consider a closed system;

the system is in contact with a heat bath with which it exchanges
only energy; it does not exchange matter;

Let N be the number of molecules in the system, V the volume and
T the temperature

Let us index the microstates of the system as i = 1, 2, · · · and the
corresponding energies as ε1, ε2, · · · .
Aim is to calculate Pi - the probability of microstate i .

we shall calculate Pi by constructing an ensemble
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Method of most probable distribution

Construct a canonical ensemble; calculate the probability of microstate i

Assemble a very large number of mental copies of the system such
that adjacent systems are in thermal contact with each other.

Isolate the entire assembly of systems

A macrostate of the isolated system is described by specifying a string
of numbers {a1, a2, · · · }.
ai is the number of members of ensemble in microstate i

we have the constraints :
∑

j aj = A; and
∑

j ajεj = E
A is the number of elements in the ensemble;

E is the total energy of the isolated system; this energy is constant
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Method of most probable distribution

We have

Ω̂(a1, a2, · · · ) =
A!

a1!a2! · · ·

Pi =

∑
{a1,a2··· }(ai/A)Ω̂(a1, a2, · · ·∑
{a1,a2··· } Ω̂(a1, a2, · · ·∑

j

aj = A;
∑
j

ajεj = E

The isolated system is going to be found in that macro state
{a∗1, a∗2, · · · } for which the entropy kB ln Ω̂(a1, a2, · · · ) is maximum.

then

Pi =
a∗i
A

the problem reduces to finding {a∗1, a∗2, · · · } that maximizes the
entropy under the two constraints
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Lagrange undetermined multiplier

Introduce a Lagrange multiplier λ for the first constraint, a Lagrange
multiplier β for the second constraint and maximize the entropy. We
get

Pi =
a∗i
A

=
1

Q
exp(−βεi )

Q(T ,V ,N) =
∑
j

exp[−βεj(V ,N)]
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canonical partition function to thermodynamics

Thermodynamic internal energy U is given by the canonical ensemble
average of statistical mechanical energy 〈E 〉, see below.

U = 〈E 〉 =
1

Q

∑
i

Ei exp(−βEi ) = − 1

Q

∂Q

∂β

We can show that

σ2 = 〈E 2〉 − 〈E 〉2 = kBT
2

(
∂U

∂T

)
V

= kBT
2CV

F (T ,V ,N) = −kBT lnQ(T ,V ,N)

Thus once we know the partition function for a macroscopic system,
we can calculate all its macroscopic (thermodynamic) properties.
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Open system and Grand canonical ensemble

For an open system, which exchanges energy as well as matter with
the bath, we have ΩOS denoting the set of all microstates; the
probabilities are given by,

p(C) = Q−1 exp

[
− βE (C) + βµN(C)

]
In the above C ∈ ΩOS ; µ is the chemical potential; Q is the
grand-canonical partition function; N(C) is the number of particles in
the system when in microstate C.

Q(T ,V , µ) =
∑
C∈ΩOS

exp

[
− βE (C) + βµN(C)

]
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Microscopic Interpretation of Work and Heat

εj : energy of the microstate j
pj : probability of the microstate j

U =
∑
j

pjεj

dU =
∑
j

[
∂U

∂pj
dpj +

∂U

∂εj
dεj

]

=
∑
j

[
εj dpj + pj dεj

]
=

∑
j

εjdpj +
∑
j

pjdεj

= d̄ q + d̄ W
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Microscopic interpretation of work and heat

∑
j εjdpj refers to Heat;

This term refers to the energy exchanged by the system with the heat
bath in the form of heat.
during this process, the energy of a microstate does not change.
only the occupation probabilities {pi} change.∑

j pjdεj refers to Work done on the system.

during this process the occupation probabilities - {pj} do not change.
only the energy of the microstates change.
e.g. when we change volume (boundary conditions) the energy
eigenvalues of the system change.
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Work in statistical mechanics

Work Term(∑
j

pjdεj

)

the system remains in the same microstate; only the energy
of the microstate changes taking the system along with it.
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Work in statistical mechanics

∑
j

pjdεj =
∑
j

pj

(
∂εj
∂V

)
{pj}

dV

=

 ∂

∂V

∑
j

pjεj


{pj}

dV

=

(
∂U

∂V

)
S ,N

dV

= −P dV
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Heat in statistical mechanics

Heat Term (
∑

j εjdpj)

The energies of the microstates do not change; the energy put in (or
extracted out) in the form of heat induces the system to make a
transition from one microstate to another of higher (or lower) energy;
such a transition could occur even otherwise by a spontaneous
fluctuation.
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Heat in statistical mechanics - closed system

S = −kB
∑
j

pj log pj ; dS = −kB
∑
j

[dpj + dpj log pj ]∑
j

dpj = 0

 ; dS = −kB
∑
j

dpj log pj[
pj = exp[−βεj ]/Z

]
; log pj = −βεj − logZ

dS = kB
∑
j

dpj [βεj + logZ ]∑
j

dpj logZ = 0

 dS = kBβ
∑
j

dpjεj ;

TdS =
∑
j

dpjεj = d̄ qR
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entropy in statistical mechanics

Isolated system : S = kB ln Ω̂

systems that are not isolated : e.g. closed systems, open systems

consider a general system with micro states denoted by {1, 2, · · · }
and corresponding probabilities {p1, p2, · · · }
construct an ensemble of (macroscopically) identical copies of the
system

ai denotes the number of members of the ensemble in micro state i

A =
∑

i ai denotes the total number of members of the ensemble

each ai is arbitrarily large; hence A is also arbitrarily large
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entropy for a system with {pi : i = 1, 2, · · · }

we have pi = ai/A ∀ i

Ω̂(a1, a2, · · · ) =
A!∏
i ai !

a natural definition of entropy is then

S(a1, a2, · · · ) = kB ln
A!∏
i ai !

= kB

(
A lnA−A−

∑
i

ai ln ai +
∑
i

ai

)

= kB

(
A lnA−

∑
i

ai ln ai

)
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entropy of a system with {pi : i = 1, 2 · · · }

S(a1, a2, · · · ) = −kB
∑
i

[ai ln ai − ai lnA]

= −kB
∑
i

ai ln
(ai
A

)
= −kBA

∑
i

(ai
A

)
ln
(ai
A

)
= −A kB

∑
i

pi ln pi

the above is the entropy of A systems;

therefore the entropy of one system in the ensemble is
S/A = −kB

∑
i pi ln pi .
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Some very recent developments

Switching Experiment

Consider an irreversible process in which we switch the value of a
thermodynamic variable λ from 0→ 1

We start the switching when the system is in equilpibrium with the
surroundings at inverse temperature β.

Let τ be the switching time

during the switching process and a the end of the switching process
the system need not be in equilibrium

the system can go far from equilibrium

Let {Wi : i = 1,N} be the values of W observed in N N switching
experiments, all carried out with the same protocol
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Work fluctuations

Work fluctuation theorem says, for experiments carried out with an
irreversible protocol, we can

1

N

N∑
i=1

exp(−βW ) = exp(−β∆F )

on the left we have a quantity measured in a nonequilibrium process

on the right we have an equilibrium quantity

an equilibrium quantity can be obtained from measurements from
irreversible processes

this is a remarkable finding
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Heat and entropy fluctuations

there are other equalities relating non-equilibrium measurements to
equilibrium quantities based on

entropy and
heat fluctuations

there are attempts to define entropy for nonequilibrium systems from
Chaos theory

some success has been obtained for steady state systems

these constitute recent trends in thermodynamics

these constitute recent developments in thermodynamics
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dissipation is proportional to fluctuations

exponential is a convex function : 〈e−x〉 > e〈x〉

we recover the second law inequality from work fluctuation theorem
〈W 〉 > ∆F for an irreversible process

in the reversible limit τ →∞ we recover conventional
thermodynamics relation 〈 W 〉 = ∆F

For τ large but not infinity, we get

〈W 〉 −∆F =
1

2
βσ2

W

dissipation is proportional to fluctuation
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fluctuation dissipation theorem

Let

p =

∫ WR

−∞
ρ(W , τ)dW

in the above ρ(W , τ) describes the work ensemble of non-equilibrium
experiments all carried out with the same protocol over time duration
τ

in the reversible limit there is no dissipation Wd = 0

in the reversible limit we also have σ2
W = 0

Fluctuation dissipation theorem says

σ2
W ∝Wd
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(Maxwell’s) demons don’t die

the above implies σW >> Wd

after a bit of algebra we find that when the process becomes more
and more reversible p → 1/2

p is the probability of second law violation at microscopic level

the result that p = 1/2 in the reversible limit is paradoxial

Is it that we have Maxwell’s demon reborn ?

these are open questions and we require fresh thinking from young
minds
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Thanks and Good bye

THANKS
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