
0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

MP-Lecs Finite Dimensional Vector Spaces

Lecture Notes Based on Mathematical Physics Courses

Offered at University of Hyderabad and IIT Bhubaneswar

A. K. Kapoor
email:akkhcu@gmail.com

( Ver 2 , September 19, 2015)

Verify now → Click for ans

1

http:///0space.org/node/1175


0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

Contents

I Basics concepts 1

1 Groups, Fields and Vector Spaces 2
§1 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
§2 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
§3 Subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Linear Independence, Basis and Dimension 7
§1 Linear Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
§2 Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
§3 Linear Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Linear Functionals 11
§1 Linear Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
§2 Dual Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
§3 Dialogues Linear Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Linear Operators-I 15
§1 Vector Space of Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
§2 Product and Commutator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
§3 Inverse of an Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
§4 Eigen-values and Eigen-vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Linear Operators-II 19
§1 Properties of Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
§2 Invertibilty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Matrix Representation 24
§1 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
§2 Change of Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 Topics for Further Study 29

II Inner Product Spaces 30

8 Norm and Inner Product 31
§1 Norm and scalar product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
§2 Cauchy Schwarz inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
§3 Triangle Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1

2



0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

1002

9 Orthogonality 37
§1 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
§2 Grahm Schmidt Orthogonalization Procedure . . . . . . . . . . . . . . . . . . . . 39
§3 Bessel’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

10 Complete Orthonormal Sets 41
§1 Complete Orthonormal Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

11 Linear Operators in Inner Product Spaces 44
§1 Adjoint of an Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

12 Hermitian and Unitary Operators 47
§1 Hermitian Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
§2 Unitary Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
§3 Properties of Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . 49

13 Change of Orthonormal Basis and Dirac Notion 51
§1 Representation in an Orthonormal Basis . . . . . . . . . . . . . . . . . . . . . . . 51
§2 Change of o.n. Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
§3 Dirac Bra-Ket Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
§4 Change Of O.N. Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Topics and References for Further Study 56

3



0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

Preface

These lecture notes are based on Mathematical Physics courses taught at University of

Hyderabad and IIT Bhubaneswar. The material included here can be covered in about twelve

to fifteen lectures. The primary reference has been the book by Halmos [1].

A companion set of notes of solved examples and exercises is planned as a separate unit.

I would like to thank the students of Hyderabad University of different batches who at-

tended my course in Mathematical Physics. In particular I thank the M.Sc. students of I.I.T.

Bhubaneswar whose help has been crucial in finalizing the lecture notes and making it available

to a larger audience.

Several important topics could not be covered due to constraints on number of lecture hours

available. References for these have been provided in the end.

References

[1] Paul R. Halmos, Finite Dimensional Vector Spaces
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Basics concepts
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Lecture 1

Groups, Fields and Vector Spaces

Definition 1 To every ordered pair 〈a, b〉 of elements of a set X a binary operation assigns an

element, denoted by a∗b, of the set X . For a binary opeartion to be a valid one it must be defined

for all pairs and the a∗b must belong to the set and the result of binary operation must be unique.

Definition 2 A group is a pair 〈G, ∗〉 with a binary operation ∗ defined on a set G such that

the following properties.

(G-1) Associative property : a ∗ (b ∗ c) = (a ∗ b) ∗ c ∀ a, b, c ∈ G

(G-2) Existence of identity : ∃ an element e ∈ G such that

e ∗ a = a ∗ e = a ∀ a ∈ G.

(G-3) Existence of inverse : ∀ a ∈ G there exists an element a′ such that

a ∗ a′ = a′ ∗ a = e

EXAMPLES OF GROUPS

1. The set of all real numbers R forms a group with addition as the binary operation.

2. The set of all complex numbers C is a group with addition as group operation.

3. The set of all positive, non-zero, real numbers R+ is a group with respect to multiplication

as group operation.

4. The set of all N ×N real ( or complex ) matrices form a group under matrix addition.

5. The group of all N × N real (or complex) matrices with determinant 6= 0 form a group

under the matrix multiplication.

2
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§1 Fields

Definition 3 A field F is a triple 〈F ,+, ·〉, where, · and + are two binary operations defined

on a set F such that the axioms (F-I) to (F-III), given below, are satisfied. The elements of the

field will be called scalars and will be denoted by greek letters α, β, γ, . . . .

(F-1) To every pair α, β the scalar α + β is called the sum of α, β which satsifies the following

axioms ∀α, β, γ ∈ F

(i) α+ β = β + α

(ii) α+ (β + γ) = (α+ β) + γ

(iii) ∃ a unique scalar 0 such that 0 + α = α = α+ 0

(iv) ∀α ∈ F ∃ a unique scalar (−α) ∈ F we have α+ (−α) = 0

These properties imply that F is a group with + as binary operation.

(F-2) The scalar α · β will be called the product of α, β and has the following properties.

(i) Commutative Property : α · β = β · α
(ii) Associative Property : α · (β · γ) = (α · β) · γ
(iii) Existence of multiplicative identity : ∃ a unique scalar 1 such that

α.1 = 1.α = α

(iv) ∀α 6= 0 ∃ a scalar denoted by α−1 such that α · α−1 = α−1 · α = 1

(F-3) The sum and the product obey the distributive property :

α · (β + γ) = α · β + α · γ

EXAMPLES OF FIELDS

1. Set of all rational numbers Q is a field with usual addition and multiplication as the two

binary operations.

2. Set of all real numbers R is a field with usual addition and multiplication as the two binary

operations.

3. Set of all complex numbers C is a field with usual addition and multiplication as the two

binary operations.

4. The set Z+ of all positive integers is not a field with the usual addition and multiplication

as two binary operations ( give all possible reasons).

5. The set Z of all integers is not a field with the usual addition and multiplication. ( Give

one reason ).

7
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§2 Vector Spaces

Definition 4 Let F be a field and + be a binary operation defined on a set V. The triple

〈V ,+,F〉 is a vector space on a field F if the following properties are satisfied.

(V-1) To every pair of vectors f, g ∈ V , there corresponds a vector f + g ∈ V called the sum of

f and g such that

(i) f + g = g + f ∀ f, g ∈ V

(ii) f + (g + h) = (f + g) + h ∀ f, g, h ∈ V

(iii) ∃ a unique vector 0 ∈ V such that

f + 0 = f ∀ f ∈ V

(iv) To every vector f ∈ V , there corresponds a vector −f ∈ V such that

f + (−f) = 0

(V-2) ∀ α ∈ F and f ∈ V there corresponds a unique vector αf ∈ V such that

α(βf) = (αβ)f ∀ α, β ∈ F

and

1.f = f ∀f ∈ V

(V-3) ∀α, β ∈ F and ∀f, g ∈ V we have

(α+ β)f = αf + βf

and

α(f + g) = αf + αg

EXAMPLES OF VECTOR SPACES

(I) 1. Every field F is also a vector space over F as field of scalars. Thus we have the

following important special examples of vector spaces.

2. Set of all complex numbers C is a complex vector space with C as the field of scalars.

3. Set of all real numbers R is a real vector space with R as the field of scalars.

4. Set of all rational numbers Q is a rational vector space with Q as the field of scalars.

(II) Set of all n-tuples (α1, α2, ..., αn) where αk ∈ F is denoted by Fn. This set is vector space

with F as field of scalars. Thus

1. Cn is a complex vector space over C as the field of scalars.

8
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2. Rn is a real vector space over R as the field of scalars.

3. Qn is a rational vector space over Q as the field of scalars.

(III) 1. All polynomials in a variable t, with coefficients in any field F is vector space P.

P = {p(t)|p(t) = α0 + α1t+ α2t+ ...+ αnt
n + ...and αj ∈ F}

Here F can be any of the fields such as C,R,Q, . . .

2. Consider the set P of all polynomials in a variable t, with coefficients in any field F

and consider the subset PN consisting of all polynomials of degree ≤ N . Then PN

is a vector space.

(IV) 1. Let F be set of all functions defined on an interval [a, b] and having complex values.

With any one of the fields C,R, or Q, F is a vector space.

2. Let F be as in (IV-1) and C (0) be the subset of all continuous functions. Then C(0)

is a vector space.

3. Let F be as in (IV-1) and C(r) be the subset of all functions for which r− derivatives

exist and are continuous on [a, b]. The C(r) is a vector space.

4. Let C (0) be as in (IV-2). Let S be a subset of C (0) consisting of those functions which

vanish at a given point x0.Then S is vector space. In general, if one can takes all

functions which vanish at x1, x2, . . . , xn then also we get a vector space.

(V) Let MN be the set of all N ×N matrices whose element are scalars from a field F . With

standard matrix addition as vector addition MN is a vector space over the same field F

(VI) The set of all functions f on an interval [a, b], for which
∫ b
a |f(x)|p dx is finite, is a vector

space denoted by L p[a, b]. That addition of two functions in L p[a, b] gives back a function

in the same space will not be proved here. The space L p[a, b], for p = 2, is the set of all

square integrable functions on the interval [a, b].

(VII) The set of all infinite sequences (α1, α2, . . . , ..), such that the infinite series

∞∑

k=1

|αk|p

converges, is a vector space denoted by ℓp. That the sum of two sequences, α, β ∈ ℓp is

also in ℓp, space requires a proof which will not be given here.

(VIII) A set {0}, consisting of only one element, the null vector, is a vector space over any field.

§3 Subspace

Definition 5 Let V be a vector space over a field F . Let S be a subset of V. Let the vector

addition in S be defined in the same way as in V. If S is also vector space over the same field

F , we say that S is subspace of V.

9
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EXAMPLES OF SUBSPACES

1. Every vector space V is subspace of itself.

2. The subset having only the null vector, 0, is a subspace of every vector space.

3. Let V1 be the vector space of complex numbers over the field of real numbers. Let V2 be

the vector space of all real numbers with R as the field of scalars. The V2 is a subspace of

V1.

4. The set C(1) of functions with continuous first derivative is a subspace of the vector space

of all continuous functions with the same field of scalars.

5. Let C(0)[a,b] be the set of all continuous complex valued functions on the interval [a, b].

This set is a vector space and we have

(a) the subset consisting of of all functions which vanish at a given point x0 is a subspace.

(b) the subset of C(0) consisting of all functions having value 1/2 at a point x0 is

not a subspace.

(c) The set of all solutions of a linear differential equation

a0(x)
dny

dxn
+ a1(x)

dn−1y

dxn−1
+ . . .+ y(x) = 0

is a vector space.

6. Consider the set of all vectors in three dimensions, R3 which is real vector space. The

subset S1 of all vectors which are multiples of a fixed vector ~A and the subset S2 of all

vectors in a given fixed plane passing through the origin, and are two examples of subspaces

of R3.

It is easy to see that intersection of two subspaces of a vector space is again a subspace.

10
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Lecture 2

Linear Independence, Basis and
Dimension

§1 Linear Independence

Definition 6 A set of vectors S = {f1, f2, ...fn} is called linearly dependent set if ∃ a set

of scalars α1, α2, . . . such that not all α’s are zero and

α1f1 + α2f2 + · · ·+ αnfn = 0

Definition 7 A set of vectors S = {f1, f2, ...fn} is called linearly independent set if it is

not a linearly dependent set. This means that a set X is linearly independent if

α1f2 + α2f2 + · · ·+ αnfn = 0

implies α1 = α2 = · · · = 0.

Definition 8 Let {f1, f2, ..., fm} be a finite set of vectors in vector space V. Let α1, α2, . . . , αm

be a set of scalars and f ∈ V be such that

f = α1f1 + α2f2 + · · ·+ αmfm

Then we say that f is linear combination of the vectors f1, f2, . . . , fm.

Properties Of Linear Combination

1. If f ∈ V is a linear combination of {f1, f2, . . .}, then the scalars αi in

f =
∑

αifi

are uniquely determined if and only if {f1, f2, . . .} is a independent set.

2. If {fi} is a linearly independent set, a necessary and sufficient condition that f ∈ V be a

linear combination of {fi} is that the set {f, fi} be linearly dependent.

3. Every set of vectors containing a linearly dependent set is also linearly dependent.

Definition 9 A vector space is called finite dimensional if ∃ an integer N such that every

set containing more than N elements is a linearly dependent set.

7
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§2 Basis

Definition 10 A set of vectors X is called a basis in a vector space V if the following two

properties are satisfied.

• the set X is a linearly independent set, and

• every vector f ∈ V is a linear combination of vectors in X , i.e.,

f = α1x1 + α2x2 + ...+ αnxn

where xk ∈ X for all k = 1, 2, . . . , n.

Examples Of Basis

1. Vectors {~i,~j,~k} form a basi s for the set of all vectors in three dimension.

2. Any three vectors

3. Any three vectors which are not coplanar form a basis in the space of vectors in three

dimension.

4. {1, x, x2, ..., xN} is a basis in the space of all polynomials of degree N.

5. The set
⋃

n {cosnx, sinnx}, where n = 1, 2, 3, ..., is a basis in space of all periodic functions

on [−π, π] with period 2π.

6. The vectors E = e1, e2, ..., eN where

e1 = (1, 0, 0, ..., 0) ; e2 = (0, 1, 0, ...0) ; .... eN = (0, 0, 0, ..., 1)

form a basis in the vector space CN . This basis will be called the canonical basis or the

standard basis.

7. The vectors E = {e1, e2, ..., eN} also form a basis in RN and in QN .

Theorem )||(1 (Number of Elements in a Basis) The number of elements in any one basis

is equal to number of elements in every other basis.

Definition 11 For a finite dimensional space the number of elements in a basis is defined to be

the dimension of the vector space.

12
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Summary Of Properties Of Bases

Given that a vector space V has dimension N we have the following properties.

1. Every set containing N + 1 or more vectors is a linearly dependent set.

2. A set of N vectors is a basis if and only if it is linearly independent.

3. A set of N vectors X is a basis iff every vector in V is linear combination of vectors in

the set

X .

Definition 12 Let S = {f1, f2, . . . , fm} be subset of a vector space. The linear span of S is

the set of all vectors f such that f is linear combination of vectors f1, f2, . . . , fm ∈ S. Linear

Span of S = {f |f =
∑m

k=1 αkfk} and fk ∈ V and αk ∈ V }

§3 Linear Functional

Definition 13 A linear functional on a vector space is a mapping from the vector space to

the field of scalars :

Ψ : f 7→ Ψ(f) ∈ F

such that Ψ is linear:

Ψ(αf + βg) = αΨ(f) + βΨ(g)

Definition 14 The set of all linear functional on a vector space V forms a vector space by itself

if the addition of two functionals, φ and ψ, is defined by

(ψ + φ)(f) = ψ(f) + φ(g)

This vector space is called vector space dual to V and is denoted by Ṽ.

Examples of Functionals

1. The functional which assigns 0 ∈ F to every vector is a linear functional.

2. In C n let x = (ξ1, ξ2, ..., ξn) and Ψ(x) defined by

Ψ(x) = α1ξ1 + α2ξ2 + . . .+ αnξn

is a linear functional where αk ∈ C .

3. In the function space L 2[a, b] given fL2[a, b] define a functional Ψ by

Ψ(f) =

∫ b

a
g∗(x)f(x)dx,

for a fixed g ∈ L 2[a, b] , then Ψ is linear functional.

13



0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100vs-lec-01003 10

4. For f ∈ Rn the functional Φ1 and Φ2 defined below are not linear functional. Let f =

(α1, α2, ..., αn) and

Φ1(f) =
∑

k

|αk|; Φ2(f) =
∑

k

|αk|2

14
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Lecture 3

Linear Functionals

§1 Linear Functional

Definition 15 A linear functional on a vector space is a mapping from the vector space to

the field of scalars :

Ψ : f 7→ Ψ(f) ∈ F

such that Ψ is linear:

Ψ(αf + βg) = αΨ(f) + βΨ(g)

Examples Of Functionals

1. The functional which assigns 0 ∈ F to every vector is a linear functional.

2. In C n let x = (ξ1, ξ2, ..., ξn) and Ψ(x) defined by

Ψ(x) = α1ξ1 + α2ξ2 + . . .+ αnξn

is a linear functional where αk ∈ C .

3. In the function space L 2[a, b] given fL 2[a, b] define a functional Ψ by

Ψ(f) =

∫ b

a
g∗(x)f(x)dx,

for a fixed g ∈ L 2[a, b], then Ψ is linear functional.

4. For f ∈ Rn the functional Φ1 and Φ2 defined below are not linear functionals. Let

f = (α1, α2, ..., αn) and

Φ1(f) =
∑

k

|αk|; Φ2(f) =
∑

k

|αk|2

5. Given a vector x0, we define a functional Ψ0 by

Ψx0(f) =

{
1 if f = x0

0 if f 6= x0
(3.1)

It is easy to check that the functional Ψ(x0) is a linear functional.

11
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6. In the vector space, R3, of all real vectors in 3 dimension a linear functional can be defined

as follows.

Choose a vector ~X ∈ R3 and define a functional ΨX by

ΨX( ~A) = ~X · ~A, ∀ ~A ∈ R3

Equality of two functionals: Two linear functionals Ψ and Φ on a vector space V are said

to be equal if Ψ(f) = Φ(f), ∀f ∈ V .

§2 Dual Vector Space

We will now define twin operations involving linear functionals and scalars

(i) addition of two linear functionals and

(ii) multiplication of a linear functional by a scalars

Given two arbitrary linear functionals Ψ and Φ, their sum Ψ + Φ is defined by giving its

action on an arbitrary vector f ∈ V as

(Ψ + Φ)f = Ψ(f) + Φ(f).

The sum of two linear functionals is again a linear functional. Given a scalar α and a linear

functional Ψ, multiplication of linear functional by scalar α, (αΨ) is defined by

(αΨ)(f) = αΨ(f)

and the product αΨ is again a linear functional. Then we have the following result:

Theorem )||(2 The set of all linear functional on a vector space V forms a vector space. This

vector space is called vector space dual to V and is denoted by Ṽ.

The proof is easy. We need to verify that sum of two linear functionals and multiplication

of a linear functional by a scalar result in linear functionals. The proof is obvious. Still let us

write it down.

Checking Linearity of Ψ1+Ψ2: Let Ψ1,Ψ2 be two linear functionals. Consider Φ = α1Ψ1+

α2Ψ2, then for all f ∈ V

(α1Ψ1 + α2Ψ2)f = (α1Ψ1)(f) + (α2Ψ2)(f) (3.2)

= α1Ψ1(f) + α2Ψ2(f). (3.3)

It can be proved that the dimension of a vector space dual to V is equal to the dimension

of the vector V space itself. Remember that every vector space has a basis. So we can ask for

a basis for the dual vector space. A useful construction of a basis in the dual space starts with

a basis B in the vector space, and the basis obtained will be called basis dual to B.

16
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Definition 16 Dual Basis: Let B = x1, x2, . . . , xN ⊂ V be a basis. Let linear functionals

Ψ1,Ψ2, . . . be defined, (as in Eq.(3.1) ), by

Ψ1(f) =

{
1 if f = x1

0 if f 6= x1
(3.4)

Ψ2(f) =

{
1 if f = x2

0 if f 6= x2
(3.5)

etc. In general, we have

Ψk(f) =

{
1 if f = xk

0 if f 6= xk
(3.6)

where k = 1, 2, · · · , N . Then you can check that Ψk is a basis in the dual vector space. It is

called basis dual to the chosen basis B.

The definition of dual basis can be summarized as in the table given below.

x1 x2 ... xk ... xN

Ψ1 1 0 ... 0 ... 0
Ψ2 0 1 ... 0 ... 0
... 0 0 ... 0 ... 0
Ψk 0 0 ... 1 ... 0
... 0 0 ... 0 ... 0
ΨN 0 0 ... 0 ... 1

(3.7)

Prove it now Show that the dual basis as defined as above is in fact a basis by proving the

two properties, linear independence and spanning the whole space, that a basis must have.

)||(Short Examples 1 (Dual Basis) In the vector space R3, given a basis { ~A, ~B, ~C} the set of

vectors

~a =
~b× ~c

|~b× ~c|
, ~b =

~c× ~a
|~c× ~a| , ~c =

~a×~b
|~a×~b|

. (3.8)

define linear functionals in the sense of <Example 5> on page 11.

Remark: The dual of dual of vector space V is the vector space V itself.

17
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§3 Dialogues Linear Functional

vs-dial-03001

Question: Give examples of functionals on R3. This means given a vector ~A = (A1, A2, A3),

give a rule for constructing a real number from the three components

(i) Ψ1( ~A) = A1 +A2 +A3

(ii) Ψ2( ~A) = A1A2/A3

(iii) Ψ3( ~A) = A1A2 +A2A3 +A3A1

(iv) Ψ4( ~A) = A1A2A3

(v) Ψ5( ~A) = log(A1 +A2 +A3)

(vi) Ψ6( ~A) =
√
A2

1 +A2
2 +A2

3

Question: Which of the functionals in the above example are linear and which are not linear?

(i) Ψ2 and Ψ5 are not functionals because they are not defined for all vectors. For example Ψ2 is not
defined for vectors which have zero third component.
Ψ4 is not defined if (A1 +A2 +A3) is zero negative.

(ii) Ψ1( ~A) is a linear functional. This can be seen as follows.

Thinking: In order to prove that Ψ1( ~A) is a linear I must show that

Ψ1(α ~A+ β ~B) = αΨ1( ~A) + βΨ1( ~B)

Let us assume that ~A = (A1, A2, A3), ~B = (B1, B2, B3), then

α ~A+ β ~B = (αA1 + βB1, αA2 + βB2, αA3 + βB3)

Now calculate

Ψ1( ~A) = A1 +A2 +A3 (3.9)

Ψ1( ~B) = B1 +B2 +B3 (3.10)

Ψ1(α ~A+ β ~B) = (αA1 + βB1) + (αA2 + βB2) + (αA3 + βB3) (3.11)

= α(A1 +A2 +A3) + β(B1 +B2 +B3) (3.12)

∴ Ψ1(α ~A+ β ~B) = αΨ1( ~A) + βΨ1( ~B) (3.13)

(iii) You can convince yourself that Ψ2,Ψ4,Ψ6 are not linear functionals.

18
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Lecture 4

Linear Operators-I

§1 Vector Space of Linear Operators

Definition 17 An operator, T, on a vector space V is a mapping

T : V → V

from the vector space V into itself. In other words, to an arbitrary vector f from the vector

space, an operator, T , assigns a unique vector, Tf , in the vector space V.

T : f 7→ Tf ∈ V

Definition 18 An operator, T on a vector space is a linear operator if it satisfies the property

T (α+ βg) = α T + β Tg

∀α, β ∈ F and ∀ g ∈ V. Equivalently an operator T is linear if

T (f + g) = Tf + Tg and T (αf) = αTf

It is, therefore, seen that for an operator T to be linear it is necessary that Tf = 0 if f = 0.

Definition 19 Given two linear operators A and B we can define their sum , A+B, by means

of the following rule for its action on an arbitrary vector.

(A+B)f = Af +Bf

The sum of two linear operators is again a linear operator.

Definition 20 Multiplication of a linear operator T by a scalar α is a linear operator

defined by

(αT )f = α(Tf)

15
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Theorem )||(3 With addition of linear operators and scalar multiplication defined as above, the

set of all linear operators on a vector space V is again a vector space. If the dimension of the

vector space V is n, the dimension of the vector space of all the operators onV is n2.

Definition 21 With sum, product and multiplication by a scalar defined for operators, the fol-

lowing expression defines polynomial in a linear operator A.

p(A) = α0I + α1A+ α2A
2 ++αnA

n

The operator p(A) is again a linear operator.

§2 Product and Commutator

Definition 22 Product of two operators, A and B, is defined as in the case of mappings.

(AB)f = A(Bf)

When A and B are linear operators, the product AB is also a linear operator.

Definition 23 The commutator of two operators is defined to be

[A,B ] = AB −BA

Definition 24 The anticommutator is defined by

[A,B ]+ = AB +BA

PROPERTIES OF COMMUTATOR

The commutator satisfies the following properties.

[A,B ] = −[B,A ] (4.1)

[α1A1 + α2A2, B ] = α1[A1, B ] + α2[A2, B ] (4.2)

[A, β1B1 + β2B2 ] = β1[A,B1 ] + β2[A,B2 ] (4.3)

[A,BC ] = B[A,C ] + [A,B ]C (4.4)

[AB,C ] = A[B,C ] + [A,C ]B (4.5)

[A, [B,C ] ] + [B, [C,A ] ] + [C, [A,B ] ] = 0 (4.6)

The last relation is known as the Jacobi identity.

20
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§3 Inverse of an Operator

Definition 25 Let T be an operator on a vector space. We say T is one to one if action of T

on two distinct vectors gives distinct answers.

x1 6= x2 =⇒ Tx1 6= Tx2

This is equivalent to the condition

Tx1 = Tx2 =⇒ x1 = x2

Definition 26 An operator T on a vector space is called onto if ∀ y ∈ V we can find at least

one x ∈ V such that Tx = y. This x may, in general, not be unique.

Definition 27 An operator is called invertible if it is both one to one and onto.

Definition 28 Let T be an operator which is both one to one and onto. We define inverse of

T by giving its action on an arbitrary vector u ∈ V.

Because T is onto, we can find a vector u such that Tu = v. Since T is one to one it follows

that u satisfying Tu = v is uniquely determined once the vector v is specified. We define

inverse of T , to be denoted by T−1, by the equation

T−1v = u

This definition coincides with the defintion of the inverse for a mapping. The inverse satisfies

(AB)−1 = B−1A−1,

(αA)−1 = (1/α)A−1, α 6= 0.

Definition 29 Let T be a linear operator on a vector space V. The range R(T ) is the set of

vectors obtained by applying T on all vectors f ∈ V.

R(T ) = {g|g = Tf,∈ V}

Definition 30 Also the null space of an operator, N (T), is the set of all those vectors x for

which Tx = 0.

N ( T ) = {x|x ∈ V and Tx = 0}

Both R(T ) and N (T ) are subspaces of the vector space V . ( Proof ?!)

Definition 31 The dimension of R(T ) for an operator is called the rank of the operator T .

Obviously rank (T ) ≤ dimV.

Clearly rank of an operator is the maximum number of linearly independent vectors that

can be selected from Tf when varies over the entire vector space V .
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§4 Eigen-values and Eigen-vectors

Definition 32 A subspace M ⊂ V is said to be an invariant subspace of an linear operator

X if ∀f ∈ MXf ∈ M .

Definition 33 Let T be linear operator. If f is a non-zero vector satisfying

Tf = λf

or some scalar λ , we say that f is an eigen-vector of operator T and λ is the corresponding

eigen-value.

Note that f = 0 will always satisfy the equation Tf = λf for an arbitrary λ. Therefore, null

vector is, by definition, excluded from being an eigen-vector.

It is possible that for a given λ there are more than one eigen-vectors satisfying the eigen-

value equation Tf = λ . Therefore, we define

Definition 34 Let λ be an eigen-value of an operator T . Let ν(λ) denote the number of lin-

early independent eigen-vectors Tx = λx. If ν(λ) = 1 we say that the eigen-value λ is non-

degenerate. When ν(λ) > 1, we say that the eigen-value λ is degenerate and the degeneracy

of the eigen-value λ is defined to be equal to the number of linearly independent eigen-vectors

with eigen-value λ.
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Lecture 5

Linear Operators-II

§1 Properties of Operators

An operator is defined to be invertible if it is one to one and onto In case of vector spaces of finite

dimension either one of these two properties is sufficient for a linear operator to be invertible.

In this lecture this and other issues related to existence of inverse are discussed.

Theorem )||(4 Let T be a linear operator on a finite dimensional vector space V (dimV = N).

Then the following statements are equivalent.

(L1) Tx = 0 implies x = 0.

(L2) T is one to one.

(L3) If X = {x1, x2, . . .} is a lineraly independent set then TX ≡ {Tx1, Tx2, . . .} is also

linearly independent set.

(L4) If X = {x1, x2, . . . , xN} is a basis then TX ≡ {Tx1, Tx2, . . . , TxN} is also a basis.

(L5) T is an onto operator.

(L6) Let X = {x1, x2, . . . , } and Y = {y1, y2, . . . , } be sets of vectors such that yj = Txj . If Y

is a linearly independent set of vectors, then X is also linearly independent.

(L7) If X and Y are as in (6) above and if Y is a basis, then X is also a basis.

Proof

: We shall prove that

(1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5) =⇒ (6) =⇒ (7) =⇒ (1).

Proof of (L1) =⇒ (L2) We are given (L1) :Tx = 0 =⇒ x = 0. Consider Tx1 = Tx2; Then

Tx1 − Tx2 = 0 Using linearity we get T (x1 − x2) = 0. Using (L1) we get x1 = x2. Thus

Tx1 = Tx2 → This means that T is one to one.

19
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Proof of (I2) =⇒ (I3) To prove {Tx1, Tx2, ...}is linearly independent consider

α1(Tx1) + α2(Tx2) + ... = 0 = T0

T (α1x1 + α2x2 + ...) = T0

Using (L2),T is one to one gives α1x2 +α2x2 + ... = 0 It is given that x1, x2, .... is linearly

independent, hence we get α1 = α2 = ... = 0 This proves that {Tx1, Tx2, ...} is linearly

independent.

Proof of (L3) =⇒ (L4) Let B = {e1, e2, ..., eN} be a set of basis vectors. ∴ {e1, e2, ..., eN} is

linearly independent. Hence using (L3) we see that {Te1, T e2, ...., T eN} is also linearly

independent set. The number of elements, N , in this set is equal to the dimension of the

vector space, hence the set is also a basis set.

Proof of (L4) =⇒ (L5) To prove (5),i.e., T is onto we must show that ∀ vectors y ∈ V , we
can find a vector x such that Tx = y. Let{e1, e2, ..., eN} be a basis set then (4) gives that

{Te1, T e2, ...., T eN} is also a basis.

∴ given an arbitrary vector y ∈ V , we can expand y in terms of the vectors {Te1, T e2, ...., T eN}
:

y = α1Te1 + α2Te2 + ...+ αNTeN

or , using linearity we have

y = T (α1e1 + α2e2 + ...+ αNeN )

Therefore, we have shown that y can be written as Tx, where x is given by

x = (α1e1 + α2e2 + ...+ αNeN )

Proof of (L5) =⇒ (L6) Given T is onto means that for every y ∈ V we can find at least one

vector x ∈ V such that y = Tx. Hence, starting from {y1, y2, ...} we can form the set

{x1, x2, ....} such that Txk = yk. Assume, as given in (L6), that {y1, y2, ...} is LI . To

prove that {x1, x2, ....} is LI consider

α1x1 + α2x2 + .... = 0

Applying T on the above equation we get

T (α1x1 + α2x2 + ....) = 0

or, using the linearity

α1Tx1 + α2Tx2 + .... = 0

or,

α1y1 + α2y2 + .... = 0

24
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As {y1, y2, ....} is given to be linearly independent the above relation can be satisfied only

when

α1 = α2 = .... = 0

This proves that the set {x1, x2, ....} is LI .

Proof of (L6) =⇒ (L7) Y = {y1, y2, ..., yN} is a basis set and is, therefore, LI. (L6) gives that

the set X = {x1, x2, . . . , xN} is also LI. Linear independence of the set X along with the

fact that the number of elements in X is equal to the dimension of the vector space V
proves that the set X is a basis set.

Proof of (L7) =⇒ (L1) Let Y = {y1, y2, ....yN} be a basis and let the set X = {x1, x2, ...., xN}
be as in the statement (L7) then X is a basis.

Assume x is such that Tx = 0, we have to show that x = 0. Expand x in terms of vectors

in the basis set X :

x = α1x1 + α2x2 + . . .+ αNxN

Applying T on the above equation, and using Tx = 0, we get

T (α1x1 + α2x2 + . . .+ αNxN ) = 0

α1Tx1 + α2Tx2 + . . .+ αNTxN = 0

α1y1 + α2y2 + . . .+ αNyN = 0

The last equation above can hold only when

α1 = α2 = . . . = αN = 0

This gives the desired result x = 0 proving (L1).

§2 Invertibilty

We have defined an operator to be invertible if it is one to one and onto. For linear operators on

finite dimensional vector spaces the property of being one to one is equivalent to the property

of being onto. Thus a linear operator T on a finite dimensional vector space has an inverse if

any one of the following two statements holds.

(a) the operator is one to one. (b) the operator be onto.

Now we will summarize, with some repetitions, a set of statements, each of which is necessary

and sufficient so that a linear operator in a finite dimensional vector space may be invertible.

Theorem )||(5 (Conditions for an Operator to be Invertible ) Let T be a linear operator

on a finite dimensional vector space. Then the following eleven statements are equivalent.
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(I1) Inverse of T exists.

(I2) T is one to one.

(I3) T is onto.

(I4) The operator T takes a set of basis vectors to basis vectors. This means that X is a set

of basis vectors implies that TX is also a basis set.

(I5) Let X = {x1, x2, . . . , xN} be a subset of the vector space V and let yk = Txk. If the set

Y = {y1, y2, . . . , yN} is a basis then the set X is also a basis.

(I6) Tx = 0 implies x = 0

(I7) Range space of T is entire vector space TV = V .

(I8) The null space of N (T ) = {0}.

(I9) dim(TV) = dim(V).

(I10) Rank (T ) = dimV.

(I11) dimN (T ) = 0

Proofs

: The proof that (I1) ⇐⇒ and (I2) and (I1) ⇐⇒ (I3) are repetitions of statements (L1) to (L7).

(I4), (I5), and (I6) are equivalent to (I2) and to (I3) has already been proved.

The property (I7),i.e., range space of T is entire vector space, TV = V , coincides with T

being onto and is therefore same as (I3).

The property (I8),i.e., the null space N (T ) = 0, is just a restatement of (I6), i.e., Tx = 0

implies x = 0.

Let X = {x1, x2, . . . , xN} is a basis set for V . Now we the following implications hold.

T has inverse

⇐⇒ T is one to one

⇐⇒ set TX = {Tx1, Tx2, ..., TxN} is a basis

set (using (I4) ⇐⇒ linear span of TX = V
⇐⇒ TV = V .

The last implication follows from the fact that X ⊆ V implies TX ⊆ V which together with

TX = V gives TV = V .
For proving invertibility being equivalent to (I10) recall rank(T ) = dim(TV). Using (I9) we

get the desired result that the operator T has an inverse if and only if rank (T ) = dimV . Thus
item 10. is true if and only if (I1) is true.
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The property (I10) gives that a linear operator T is invertible if and only if rank (T ) =

dim(V). Now dimN (T )+rank(T ) = dim(V). Hence T is invertible if and only if dimN (T ) = 0.

This proves T has inverse ⇐⇒ I11.

Theorem )||(6 Let T, S,R be arbitrary ( linearity is not demanded ) operators on a vector space

such that

TS = RT = I (5.1)

where I is the identity operator. Then T is invertible and

R = S = T−1

Proof

We begin with noting the linearity is not demanded as a condition on the operators. Let R and

S exist such that Eq.(5.1) is satisfied. Then

T (Sx) = (TS)x = x, ∀x ∈ V .

Thus T is onto because given any vector x ∈ V there exists a vector ( y = Sx ) such that

Ty = x.

Next using RT = I we will show that T is one to one. To show that T is one to one, we

must prove that Tx1 = Tx2 ⇐⇒ x1 = x2. Let Tx1 = Tx2 apply R on both sides. This gives

R(Tx1) = R(Tx2), or, (RT )x1 = (RT )x2 using the given property RT = I we get the desired

result that x1 = x2. Thus Tx1 = Tx2 ⇐⇒ x1 = x2 .Therefore T is one to one. Thus T is

invertible because T is both one to one and onto.

Conversely if T−1 exists , the given relations are satisfied for R = S = T−1. There (II.12)

is necessary and sufficient for an operator to have an inverse. Note that when the operator T is

linear, each one of the two conditions (a) TS = I (b) RT = I is separately sufficient for T to

have an inverse.
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Lecture 6

Matrix Representation

We shall now discuss a way of representing vectors in a vector space, having dimension N , by

N component column vectors and linear operators by N ×N matrices .

Let X = x1, x2, ..., xN be a basis. Every vector x ∈ V can be expanded in terms of the basis

vectors x1, x2, ..., xN . Thus

x = ξ1x1 + ξ2x2 + ....+ ξNxN . (6.1)

The scalars ξ1, ξ2, ..., ξN will be called the components of the vector x with respect to the basis

X . Knowing the vector x the scalars ξ1, ξ2, ..., ξN are uniquely fixed and conversely if the scalars

ξ1, ξ2, ..., ξN are given, the vectors in the basis X can be used to get the vector. We shall assemble

the components ξ1, ξ2, ..., ξN in form of an N- component column denoted by x.

x 7→ x =




ξ1
ξ2
...
ξN


 (6.2)

Let x ∈ V be a vector and T be a linear operator. The answers for the column representing a

vector and for matrix representing an operator depends on chioce of basis, and will change when

a new basis is selected.

To find the matrix representing a linear operator T, we note that the knowledge of the action

of a linear operator on a set of basis vectors is sufficient to know the action of an operator on

any vector. Thus we consider the basis X = x1, x2, ..., xN and apply the operator T on every

element to obtain the set TX = {Tx1, Tx2, Tx3, ...TxN}. Next we expand the vectors in the

set Txk so obtained in terms of the basis vectors.

Txk =
∑

j

tjkxj , k = 1, 2, ..., (6.3)

The mth row and nth column of the matrix T is given by tmn. We write the above N equations

24
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for k = 1, 2, ...., N as

Tx1 = t11x1 + t21x2 + t31x3 + ....+ tN1xN (6.4)

Tx2 = t12x1 + t22x2 + t32x3 + ....+ tN2xN (6.5)

Tx3 = t13x1 + t23x2 + t33x3 + ....+ tN3xN (6.6)

TxN = t1Nx1 + t2Nx2 + t3Nx3 + ....+ tNNxN (6.7)

(6.8)

The rule for constructing the matrix T for the operator T is to collect the coefficients appearing

in the above equations as a matrix and take its transpose. Thus we have

T → T = Transpose of




t11 t21 t31 . . . tN1

t12 t22 t32 . . . tN2

t13 t23 t33 . . . tN3

. . . . . . . . . . . . . . .
t1N t2N t3N . . . tNN



=




t11 t12 t13 . . . t1N
t21 t22 t23 . . . t2N
t31 t32 t33 . . . t3N
. . . . . . . . . . . . . . .
tN1 tN2 tN3 . . . tNN




(6.9)

Thus Tij = tij . With this every vector space of dimension N becomes isomorphic to FN .

Every relation between vectors and operators is equivalent to a relation between N− component

columns and N ×N matrices. For example

If y = Tx we have y= T x; Similarly, if AB = C then A = BC where A,B,C are operators

and x, y, .. are vectors in V .

§1 An Example

• Let e1 = (1, 1, 0), e2 = (0, 1, 1), e3 = (1, 0, 1) be a basis in R3. Find components of a vector

f = (x, y, z) and represent it w.r.t. the basis {e1, e2, e3}

• Let an operator T be defined as Te1 = (1, 0, 0), T e2 = (0, 1, 0) and Te3 = (1, 1, 1)

Knowledge of action of an operator T on a basis is sufficient to find its action on any

vector. Given e1, e2, e3 as above, find the vector g = Tf. 3. Find the representatives of

two vectors f, g and the matrix T w.r.t. the basis (e1, e2, e3) and verify that T f = g

SOLUTION :

(1) Let f = (x, y, z) be written as a linear combination of the vectors e1, e2, e3 :

f = ae1 + be2 + ce3 (6.10)

(x, y, z) = a(1, 1, 0) + b(0, 1, 1) + c(1, 0, 1) (6.11)

= (a+ c, a+ b, b+ c) (6.12)

ora+ c = x; a+ b = y; b+ c = z (6.13)

(6.14)
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This is easily solved to give

a = (x+ y − z)/2, b = (y + z − x)/2, c = (z + x− y)/2.

(x, y, z) =
(x+ y − z)

2
e1 +

(y + z − x)

2
e2 +

(z + x− y)

2
e3

Thus f → f where

f 7→ f =



a
b
c


 (6.15)

f =




(x+y−z)
2

(y+z−x)
2

(z+x−y)
2


 (6.16)

(2) To find how T acts on a general vector h = ae1 + be2 + ce3, we compute g = Th. Using the

linearity property we get

g = T [ae1 + be2 + ce3] (6.17)

= aTe1 + bTe2 + cTe3 (6.18)

= a(1, 0, 0) + b(0, 1, 0) + c(1, 1, 1) (6.19)

= (a+ c, b+ c, c) (6.20)

∴ Tf =

(
x, z,

(z + x− y)

2

)
(6.21)

For later use we remark that the vector g written as linear combination of {e1, e2, e3} becomes

g =
(x+ y + z)

4
e1 +

(3z − x− y)

4
e2 +

(3x− y − z)

4
e3.

(3) We construct the matrix for the operator w.r.t. the basis (e1, e2, e3). For this purpose we

must express Te1, T e2 and Te3 as linear combinations of e1, e2, e3.

T e1 = (1, 0, 0) =
1

2
e1 −

1

2
e2 +

1

2
e3 (6.22)

Te2 = (0, 1, 0) =
1

2
e1 +

1

2
e2 −

1

2
e3 (6.23)

Te3 = (1, 1, 1) =
1

2
e1 +

1

2
e2 +

1

2
e3 (6.24)

(6.25)

Therefore, the matrix, T, representing the operator T w.r.t. the basis {e1, e2, e3} is given by

T = Transpose of




1
2 −1

2
1
2

1
2

1
2 −1

2
1
2

1
2

1
2


 (6.26)

=




1
2

1
2

1
2

−1
2

1
2

1
2

1
2 −1

2
1
2


 (6.27)
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A second way of computing the vector g is to apply T on f to get g as follows.

g = Tf =




1
2

1
2

1
2

−1
2

1
2

1
2

1
2 −1

2
1
2


×



(x+ y − z)/2
(y + z − x)/2
(z + x− y)/2


 (6.28)

or

g =



(x+ y − z)/4
(3z − x− y)/4
(3x− y − z)/4


 (6.29)

This gives the components of the vector g w.r.t. the basis {e1, e2, e3}. To get back the vector

we reconstruct the vector g as

g =
(x+ y + z)

4
e1 +

(3z − x− y)

4
e2 +

(3x− y − z)

4
e3 (6.30)

=

(
(x+ y + z)

4
,
(x+ y + z)

4
, 0

)
(6.31)

+

(
0,

(3z − x− y)

4
,
(3z − x− y)

4

)
(6.32)

+

(
(3x− y − z)

4
, 0,

(3x− y − z)

4

)
(6.33)

=

(
x, z,

(z + x− y)

2

)
(6.34)

which agrees with the result obtained above.

§2 Change of Basis

The elements of columns x representing a vector x ∈ V are just the components of the vector

x with respect to a given basis. These would change when a different basis is used. Similarly

the values of the matrix elements of T for a given operator depend on the choice of basis. We

shall now give formulas on relating the components of a vector w.r.t. two different bases and on

relation between the matrices representing an operator w.r.t. two two bases.

Let x be a vector ∈ V and T be a linear operator. Let X = {xk|k = 1, 2, ...N} and

Y = {yk|k = 1, 2, .., N} be two bases. It is useful to define an operator S which takes elements

in basis X to the elements in the basis Y . Let

Sxk = yk,

thus Y = SX . The operator S will be an invertible operator.

Let the columns x and x represent the vector x w.r.t. the two bases X and Y respectively.

Similarly, let the matrices T and T represent the operator T w.r.t. the two bases X andY

respectively.

With respect to the first basis X let the representation be given by

x 7→ x; T 7→ T
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and the representation with respect to the second basis Y

x 7→ x, ; T 7→ T

In order to exhibit the relation between the two sets of representatives we make use of the

linear operator S defined above by means of equations Sxk = yk. Note that the operator S is

invertible. Let S be the matrix representing the operator S w.r.t. basis X . Then we have the

following relations.

x = S−1x; and T = S−1TS

We shall skip the proof of these relations [See Halmos ].
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Lecture 7

Topics for Further Study

The most important topics not covered in these lecture notes and suggested references are as

follows.

1. Jordan Canonical forms [1]

2. Direct product Spaces [1]

3. Multilinear functionals [1]

4. Quotient and Tensor Product Spaces [2]

5. Vectors and Tensors [2]

References

[1] Paul R. Halmos, Finite Dimensional Vector Spaces

[2] Pannkaj Sharan, Space Time and Gravitation
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Part II

Inner Product Spaces
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Lecture 8

Norm and Inner Product

Important: From now onwards all the vector spaces we deal are complex vector spaces of finite

dimension unless mentioned otherwise.

§1 Norm and scalar product

Definition 35 Norm of a vector f in a vector space V is a real number ‖f‖ satisfying the

following properties.

1. ‖f‖ ≥ 0, and, ‖f‖ = 0 if and only if f = 0.

2. ‖αf‖ = |α|‖f‖

3. ‖f + g‖ ≤ ‖f‖+ ‖g‖ ( Triangle Inequality )

Quick Question: Is norm a linear functional !? WHY ?

Definition 36 An inner product, ( or scalar product ), denoted by (f, g), in a complex vector

space V is a complex valued function of the ordered pair of vectors f, g ∈ V such that

1. (f, f) ≥ 0, and (f, f) = 0 iff f = 0

2. (f, g) = (g, f)∗

3. (f, α1g1 + α2g2) = α1(f, g2) + α2(f, g2)

4. (α1f1 + α2f2, g) = α∗
1(f1, g) + α∗

2(f, g)

Remark: We shall not discuss real vector spaces with inner product.

)||(Short Examples 2 Some examples of scalar product are given. That the properties of the
scalar product are satisfied can be easily checked.
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(2a) In CN a vector is a N-component column vector with complex numbers as entries. For two
vectors f, g:

f =




α1

α2

...
αN


 g =




β1
β2
...
βN




define

(f, g) =
∑

k

α∗
kβk (8.1)

(2b) In the vector space L 2(−∞,∞) of all square integrable functions, scalar product between two
functions ψ(x), φ(x) is defined as

(ψ(x), φ(x)) =

∫ ∞

−∞
ψ∗(x)φ(x), dx (8.2)

(2c) In the vector space of all polynomials P with complex coefficients, a scalar product of two
polynomials p(t), q(t) can be defined as

(p, q) =

∫ 1

−1

p∗(t)q(t) dt (8.3)

oslash In general several different scalar products can be defined in a given vector space; the choice
of scalar product for a vector space is not unique.

(2d) In the vector space of all polynomials a few examples of other scalar products are

(p, q) =

∫

−∞
∞e−t2p∗(t)q(t) dt (8.4)

(p, q) =

∫ ∞

0

e−tp∗(t)q(t) dt (8.5)

(p, q) =

∫ b

a

w(t)p∗(t)q(t) dt (8.6)

where in the last example w(t) is any nonsingular positive function defined in the range a ≤ t ≤ b.

Examples Of Properties Of Inner Product The property (4) can be proved from prop-

erties (2) and (3). Thus we have

(α1f1 + α2f2, g) = [(g, α1f1) + (g, α2f2)]
∗ (8.7)

= [α1(g, f1) + α2(g, f2)]
∗ (8.8)

= α∗
1(g, f1) + α∗

2(g, f2) (8.9)

Using the property (2) once again we get the desired result:

(α1f1 + α2f2, g) = α1(f1, g) + α2(f:2, g)

We shall now prove two important identities.

Parallelogram Identity

‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 + ‖g‖2) (8.10)
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Polarization Identity

4(f, g) = ‖f + g‖2 − ‖f − g‖2 + i‖f − ig‖2 − i‖f + ig‖2 (8.11)

PROOF :

‖f + g‖2 = (f + g, f + g) = (f, f) + (f, g) + (g, f) + (g, g) (8.12)

‖f − g‖2 = (f − g, f − g) = (f, f)− (f, g)− (g, f) + (g, g) (8.13)

‖f − ig‖2 = (f − ig, f − ig) = (f, f)− i(f, g) + i(g, f) + (g, g) (8.14)

‖f + ig‖2 = (f + ig, f + ig) = (f, f) + i(f, g)− i(g, f) + (g, g) (8.15)

Adding Eq.(8.12) and Eq.(8.13) gives the parallelogram identity. In a similar fashion taking

Eq.(8.12) - Eq.(8.13) + i⊗ Eq.(8.14) - i⊗ Eq.(8.15) gives the polarization identity.

Defining norm from an inner product In a vector space with an inner product if we define

‖f‖ =
√
(f, f),

then ‖f‖ has all the properties of the norm. The two properties (1) and (2) of the norm are

automatically satisfied. The third property, viz., the triangle inequality will be proved below

after the proof of Cauchy Schwarz inequality.

Conversely, if a norm is defined in a complex vector space we ask: ”can we introduce a norm

such that the relation is maintained?” The answer is YES if and only if the norm satisfies the

parallelogram identity. The right hand side of the polarization identity can then be taken as the

definition of inner product. The result will satisfy all the axioms for the inner product.

§2 Cauchy Schwarz inequality

As a preparation we first prove an intermediate result.

Theorem )||(7 If f is a given vector and g 6= 0 be any vector ‖f − λg‖ is minimum when λ = λ0

where

λ0 =
(f, g)∗

‖g‖2 =
(g, f)

(g, g)

and the minimum value of ‖f − λg‖ is given by

‖f − λg‖min = ‖f‖2 − |(f, g)|2/‖g‖2

Proof:

Let F (λ) = ‖f − λg‖2. We compute F (λ) , write it as function of the real and imaginary parts

of λ(≡ α+ iβ) and minimize F (λ) w.r.t. α and β.

F (λ) = ‖f − λg‖2 (8.16)

= (f − λg, f − λg) (8.17)

= (f, f)− λ(f, g)− λ∗(g, f) + ‖λ‖2(g, g) (8.18)
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Substituting λ = α+ iβ we get

F (λ) = (f, f)− α[(f, g) + (g, f)] + iβ[(g, f)− (f, g)] + (α2 + β2)(g, g)

Note that the right hand side has to be real. WHY ?! Setting

∂F

∂α
= 0, and

∂F

∂β
= 0

we get

−(f, g)− (g, f) + 2α(g, g) = 0 (8.19)

i(g, f)− i(f, g) + 2β(g, g) = 0 (8.20)

hence

α = [(f, g) + (g, f)]/2(g, g) (8.21)

β = i[(f, g)− (g, f)]/2(g.g) (8.22)

This gives the desired value λ0 corresponding to the minimum of F (λ) as

λ0 = α+ iβ =
(g, f)

(g, g)
=

(f, g)∗

(g, g)

and the minimum value of F (λ0) is then computed to be

F (λ)|min = (f, f)− |(f, g)|2/(g, g)

Theorem )||(8 (Cauchy Schwarz Inequality) Let f, g ∈ V. Then

|(f, g)| ≤ ‖f‖ ‖g‖

The equality holds if and only if f and g are linearly dependent.

Proof :If f = 0 or g = 0, the equality holds trivially and there is nothing to prove because

both sides are zero. Therefore, we assume g 6= 0. Consider x = f − λg. Then we have ‖x‖ ≥ 0

for all values of λ. We find the minimum of ‖x‖ and set it ≥ 0

min ‖x‖2 ≥ 0

Using the previous result ‖x‖2 = ‖f − λg‖2 is minimum when λ is equal to (g,f)
(g,g) (≡ λ0) and

minimum value of ‖x‖2 = ‖f − λg‖2 is given by

min ‖x‖2 = (f, f)− |(f, g)|2
(g, g)
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Thus we get

(f, f)− |(f, g)|2
(g, g)

≥ 0

or

(f, f)(g, g) ≥ |(f, g)|2

which is just the desired Cauchy Schwarz inequality

|(f, g)| ≤ ‖f‖ ‖g‖.

Note that when the Cauchy Schwarz inequality becomes equality min‖x‖2 = 0. This is possible

if and only if x = 0 for λ = λ0. This gives f − λ0g = 0 which means that f and g are linearly

dependent.

§3 Triangle Inequality

We are now in a position to prove the triangle inequalities

‖f + g‖ ≤ ‖f‖+ ‖g‖ (8.23)

Proof : Consider

‖f + g‖2 = (f + g, f + g) (8.24)

= (f, f) + (f, g) + (g, f) + (g, g) (8.25)

= (f, f) + (f, g) + (f, g)∗ + (g, g) (8.26)

= (f, f) + 2Re (f, g) + (g, g), [∵ z + z∗ = 2Re z] (8.27)

≤ ‖f‖2 + ‖g‖2 + 2|(f, g)| , [ ∵ Re z ≤ |z| ]. (8.28)

Using the Cauchy Schwarz inequality, |(f, g)| ≤ ‖f‖‖g‖, we get

‖f‖2 + ‖g‖2 + 2|(f, g)| ≤ ‖f‖2 + 2‖f‖‖g‖+ ‖g‖2 (8.29)

= [‖f‖2 + ‖g‖]2 (8.30)

∴ We get the desired inequality:

‖f + g‖ ≤ ‖f‖ + ‖g‖ (8.31)

it has the interpretation that length of any side of a triangle is less than the sum of the lengths

of the other two sides. See figure below.
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f

gf+g f g

f−g
Fig. 1 Interpretation of Triangle Inequalities

The proof of a second triangle inequality, which says that length of any side of a triangle is

greater than the difference of the lengths of other two sides of the triangle. This is translated

into mathematical form as

‖f + g‖ ≥
∣∣‖f‖ − ‖g‖

∣∣, (8.32)

and also as ‖f − g‖ ≥
∣∣‖f‖ − ‖g‖

∣∣. The proof of this inequality is left as an exercise for the

reader.
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Lecture 9

Orthogonality

§1 Orthogonality

Definition 37 We say that two vectors f and g are orthogonal if (f, g) = 0

LEMMA : If g 6= 0, the vector

x = f − (g, f)

(g, g)
g

is orthogonal to g.

Proof : Consider

(g, x) =

(
g, f − (g, f)

(g, g)
g

)
= (g, f)− (g, f)

(g, g)
(g, g) (9.1)

= (g, f)− (g, f) = 0 (9.2)

Therefore, g is orthogonal to x = f − (g, f)

(g, g)
g.

Definition 38 Two vectors f and g are said to be orthonormal, if f, g are orthogonal and

‖f‖ = ‖g‖ = 1.

Definition 39 A set of vectors X is an orthogonal set if ∀ pair x, y ∈ X , we have (x, y) = 0.

Definition 40 A set of vectors X is called orthonormal set if

(a) for every pair x, y ∈ X we have (x, y) = 0 and

(b) for every x ∈ X we have ‖x‖ = 1.

Definition 41 A set {x1, x2, ..., xr} is an orthonormal set iff (xi, xj) = δij .

)||(Short Examples 3 (Orthonormal Sets)

We will now give several examples of orthonormal sets.

(3a) In the vector space R3, the set of unit vectors {~i,~j,~k} along the three coordinate axes is an
orthonormal set. In fact, if the coordinate axes are rotated the unit vectors along the new axes will
again from an o.n. set.
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(3b) Consider the vector space Cn, with inner product of two column vectors x, y defined by x†y,
the set of vectors {x1, x2, . . .} given by

x1 =




1
0
0
...
0



, x2 =




0
1
0
...
0



, ...., xn =




0
0
0
...
1



, (9.3)

is an o.n. set.

(3c) Consider the complex vector space of all polynomials Pn. We then have following examples of
orthonormal sets.

(i) With inner product of two polynomials p(t), q(t) defined as

(p, q) =

∫ ∞

−∞
p∗(t)q(t)e−t2 dt

The set of all Hermite polynomials {H0(t), H1(t), . . . , Hn(t), . . .} is an o.n. set.

(ii) With inner product of two polynomials p(t), q(t) defined as

(p, q) =

∫ 1

−1

p∗(t)q(t) dt

The set of all Legendre polynomials {P0(t), P1(t), . . . , Pn(t), . . .} is an o.n. set.

(iii) With inner product of two polynomials p(t), q(t) defined as

(p, q) =

∫ ∞

0

p∗(t)q(t)tνe−t dt

The set of all Laguerre polynomials {Lν
0(t), L

ν
1(t), . . . , L

ν
n(t), . . .} is an o.n. set.

(iv) The set of monomials {1, t, t2, t3, . . .} is not an orthonormal set with any of the above three
inner products.

⊘ The above examples clearly show that a set being o.n. set depends on the choice scalar product.

(3d) In the vector space of square integrable functions, L 2(−∞,∞), the scalar product of two
functions ψ(x), φ(x) is defined to be

(ψ, φ) =

∫ ∞

−∞
ψ∗(x)φ(x) dx

In this space the harmonic oscillator wave functions form an. o.n. set.

(3e) In the vector space of all functions defined on interval [−π, π] and satisfying

f(−π) = f(π)

and having inner product defined by

(f, g) =

∫ π

−π

f∗(x)g(x) dx

an orthonormal set is

{
1, cosx, sinx, cos 2x, sin 2x, . . . cosnx, sinnx, . . .

}
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Remark:

The orthonormal property of a set E = {xk|k = 1, 2, . . . , r} can be written as (xk, xℓ) = δkℓ,

where δkℓ is Kronecker delta defined by

δkℓ =

{
1 if k = ℓ,

0 if k 6= ℓ.
(9.4)

Definition 42 An orthonormal set is called a complete orthonormal set if it is not contained

in any larger orthonormal set.

Theorem )||(9 An orthogonal set X = {x1, x2, ..xr} of non-zero vectors is linearly independent.

Proof : Consider

α1x1 + α2x2 + ...+ αrxr = 0 (9.5)

Taking scalar product with x1 gives zero for all terms except the first one. Thus

α1(x1, x1) = 0 ⇒ α1 = 0 (9.6)

(∵ x1 6= 0 ⇒ (x1, x1) 6= 0). (9.7)

Remark : Earlier we have seen that the vector h = f − λg is orthogonal to the vector g if λ

is taken to be (g, f)/(g, g). The following theorem generalizes this result to orthogonal sets.

Theorem )||(10 If U = u1, u2, ..., un is any finite orthogonal set containing non zero vectors of

an inner product space and if λk = (uk, x)/(uk, uk), then the vector h defined by

h = f − λ1u1 − λ2u2 − ...− λkuk

is orthogonal to every element uk in the set U

The result follows easily by taking the scalar products (h, uk) for different k.

§2 Grahm Schmidt Orthogonalization Procedure

Let X = {x1, x2, . . . , xr} be a linearly independent set. Then one can construct a set of vectors

E = {e1, e2, ....er} such that the vectors ek are linear combinations of the vectors in X and the

set E is an orthonormal set.

Proof: Recursively define

u1 =x1, e1 = u1/‖u1‖
u2 =x2 − (e1, x2)e2, e2 = u2/‖u2‖
u3 =x3 − (e1, x3)e3 − (e2, x3)e2, e3 = u3/‖u3‖

ur =xr −
r−1∑

k=1

(ek, xr)ek, er = ur/‖ur‖

It is easily verified that {e1, e2, ...} is an o.n. set.
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§3 Bessel’s Inequality

If U = u1, u2, ..., ur is any finite orthonormal set in an inner product space then for all x ∈ V
we have ∑

k

|(uk, x)|2 ≤ ‖x‖2 ( Bessel Inequality ) (9.8)

Proof : For every vector y , we have (y, y) ≥ 0. Therefore, taking y to be

y = x−
∑

k

λkuk with uk = (uk, x).

we get

(y, y) = (x−
∑

k

λkuk, x−
∑

j

λjuj) (9.9)

= (x, x)−
∑

k

λ∗k(uk, x)−
∑

j

λj(x, uj) +
∑

j

∑

k

λ∗kλj(uj , uk) (9.10)

= (x, x)−
∑

k

λ∗k(uk, x)−
∑

j

λj(x, uj) +
∑

k

λ∗kλk (9.11)

One of two the summations in the last term has been done using (uj , uk) = δjk. Substituting

λj = (uj , x) we get

(y, y) = (x, x)−
∑

(x, uk)(uk, x)−
∑

(uj , x)(x, uj) +
∑

(x, uj)(uj , x) (9.12)

= (x, x)−
∑

k

(x, uk)(uk, x) (9.13)

= (x, x)−
∑

k

|(uk, x)|2 (9.14)

Using (y, y) ≥ 0 we get the desired Bessel’s inequality.

∑

k

|(uk, x)|2 ≤ ‖x‖2 (9.15)
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Lecture 10

Complete Orthonormal Sets

§1 Complete Orthonormal Sets

Theorem )||(11 (Orthonormal Sets) If U = {u1, u2, ..., un} is any finite o.n. set in an inner

product space having finite dimension, the following conditions (P1) to (P6) on U are equivalent

to each other.

(P1) The set U is complete.

(P2) If (x, uk) = 0 ∀k then x = 0.

(P3) The subspace spanned by U is whole space.

(P4) If f ∈ V then

f =
∑

k

(uk, f)uk

(P5) If f and g are in V then

(f, g) =
∑

(f, uk)(uk, g)

(P6) If x ∈ V then,

‖x‖2 =
∑

k

|(uk, x)|2

PROOFS We shall prove that

(P1) ⇒ (P2) ⇒ (P3) ⇒ (P4) ⇒ (P5) ⇒ (P6) ⇒ (P1).

(P1) ⇒ (P2) : If ∃ a vector f such that (uk, f) = 0∀k and f 6= 0. Then the set U ∪f/‖f‖ would

be an orthonormal set containing U . But this is impossible because U is a complete set.

Therefore, f = 0.

(P2) ⇒ (P3) : Assume that (P3) is not true. If the subspace spanned by U is not whole space,

there would exist a vector f 6= 0 such that f is not a linear combination of elements in

U . Hence g = f −∑
k(f, uk)uk is different from zero and is, by construction, orthogonal
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to all uk, this contradicts (P2). Thus we have proved ∼ (P3) ⇒ ∼ (P2) giving us the

required result (P2) ⇒ (P3)..

Remember One of the ways to a statement A ⇒ B is to start from
negation of statement B and prove negation of statement A. This
method, ∼ B ⇒∼ A, is what has been used in the above two cases
to write the proof. For more, see

(P3) ⇒ (P4) : We are given that the subspace spanned by U is whole space. Hence every vector

is a linear combination of {fi}:
f =

∑

i

αiui.

Taking scalar product with uk and using the fact that U is o.n. set we get αk = (uk, f). ∴
f =

∑
k(uk, f)uk.

(P4) ⇒ (P5): Let f, g be two arbitrary vectors in the vector space. The result (4) applied to

two vectors f and g gives

f =
∑

i

λiui; with λi = (ui, f) (10.1)

g =
∑

j

µjuj , where µj = (uj , g) (10.2)

The result (P5) follows by computing (f, g) using the orthogonality properties of uk.

(f, g) =
(∑

i

λiui,
∑

j

µjuj

)
(10.3)

=
∑

i

∑

j

λ∗iµj(ui, uj) (10.4)

=
∑

ij

λ∗iµjδij (10.5)

=
∑

i

λ∗iµi (10.6)

where, in step (10.5), we have used the orthogonality property (ui, uj) = δij . This gives

us the desired result

(f, g) =
∑

i

(f, ui)(ui, g) (10.7)

(P5) ⇒ (P6): If we set f = g = x in the result of (P5), we get (P6).

(P6) ⇒ (P1):

Recall One of the methods, known as reduction ad absurdum, of proving
A ⇒ B is to assume that B is not true and to derive a contradiction.
This is what will be used to write this part of the the proof.
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To obtain a contradiction let us assume that (P1) is not true the set U is not complete.

Then there exists a vector h 6= 0 which is orthogonal to all uk, (h, uk) = 0. We apply (P5)

‖x‖2 =
∑

k

|(uk, x)|2

to x = h. The left hand side is non-zero while the r.h.s. is zero, hence a contradiction.

This proves (P6) ⇒ (P1).

Theorem )||(12 If V is vector space with inner product, then there exists a complete o.n. sets in

V, and every o.n. set contains exactly n elements.

If we start from a basis set and apply the Gram-Schmidt orthogonalization procedure we would

get a complete o.n. set. We skip the proofs and discussion.

So, for example starting from a basis of monomials {1, t, t2, . . .} and taking the scalar product

of two polynomials p(t), q(t) to be

(p, q) =

∫ ∞

∞
e−t2p(t)q(t) dt

we would get Hermite polynomials as the o.n. basis in the space of all polynomials.
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Lecture 11

Linear Operators in Inner Product
Spaces

Theorem )||(13 Let T be a linear operator in an inner product space. Let f and g be arbitrary

vectors then

(f, Tg) = (x1, Tx1)− (x2, Tx2) + i(x3, Tx3)− i(x4, Tx4)

where

x1 = f + g; x2 = f − g; x3 = f − ig; x4 = f + ig

Proof follows by proceeding in a way similar to the proof of polarization identity. Use linearity

of the operator T and expand the right hand side of the above identity to be proved.

Theorem )||(14 (When is a linear operator zero ?)

(Z1) If (f, Tg) = 0 holds for all f and g, then T = 0.

(Z2) If (f, Tf) = 0 is true for all f ∈ V , then T = 0.

(Z3) If (xi, Txj) = 0 holds for all elements xi, xj in a basis X = {x1, x2, . . . , xN} then T = 0.

Proof of (Z1) Given that (g, Tf) = 0 holds for all g, f ∈ V . Therefore, we take g = Tf. This

gives (Tf, Tf) = 0 which in turn implies Tf = 0 for all f ∈ V . Therefore, T = 0.

Proof of (Z2) Using linearity of T we have already proved the result that

4(f, Tg) = (x1, Tx1)− (x2, Tx2)− i(x3, Tx3) + i(x4, Tx4)

where

x1 = f + g;x2 = f − g;x3 = f − ig;x4 = f + ig

Since (f, Tf) = 0 for all vectors f ∈ V , the right hand side is zero. Hence we get

(f, Tg) = 0 for all f, g in the vector space . Hence using part (Z2) we get T = 0.

Proof of (Z3) Since an arbitrary vector f can be written as a linear combination, f =
∑
αkxk,

we can prove (2) by using linearity of T . Hence the result T = 0 follows.
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§1 Adjoint of an Operator

Representation Theorem For Linear Functionals It can be proved that for every linear

functional ψ : f −→ ψ(f) on a complex inner product space V of finite dimension, there exists

a vector g ∈ V such that << Proof?? >>

ψ(f) = (g, f) (11.1)

Definition 43

Given a linear operator T on an inner product space of finite dimension now we shall define

adjoint of T , to be denoted by T †. The adjoint T † will be defined once its action on an

arbitrary vector f is specified. The functional φ, defined by

φ : g → φ(g) = (f, Tg), (11.2)

is a linear functional on V , and hence there exists a vector unique vector h ∈ V such that

(h, g) = φ(g) = (f, Tg) (11.3)

We, then, define T †f = h. Thus the operator T † has the property

(f, Tg) = (T †f, g), ∀f, g ∈ V . (11.4)

Remark If we find (f, Tg) = (Xf, g) holds for all f and g we can conclude immediately that

X = T †. WHY? The proof is left as an exercise for you.

Properties of Adjoint Let A be a linear operator in a complex inner product space.

(A1) A†, the adjoint of a linear operator is again a linear operator.

(A2) (A†)† = A

(A2) (αA)† = α∗A†

(A3) (A+B)† = A† +B†

(A4) (AB)† = B†A†

(A5) If A is invertible, A† is invertible and (A†)−1 = (A−1)
†
.

)||(Short Examples 4 In vector space Cn, an operator is represented by n× n complex matrix.

The adjoint of the corresponding operator is obtained by interchanging rows and columns and

taking complex conjugate. This is the familiar definition of adjoint of matrix. The proof is left
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as an exercise for you.

2� Problem 1: In the Hilbert space op square integrable functions L 2(−∞, infty)
find adjoint of an operator X defined by

Tψ(x) = ψ(ax+ b), a 6= 0, and a, b ∈ R

Solution: To find X†, we must define its action on arbitrary square integrable function ψ(x)
starting from known action of X. The starting point is the relation

(Tφ(x), ψ(x)) = (φ(x), T †ψ(x)) (11.5)

The left hand side of this equation in the vector space L2 takes the form
∫ ∞

−∞
(Tφ(x))∗ψ(x) dx =

∫ ∞

−∞
φ(ax+ b)∗ψ(x) dx (11.6)

we should try to write it as
∫∞
−∞ φ(x)∗(???) dx (11.7)

The right hand side of Eq.(11.5) is

∫ ∞

−∞
φ(x)∗(T †ψ(x)) dx (11.8)

comparing the above expressions (12.8) and (11.7), we will get the expression (???) which will give
us the result of action of T † on ψ(x).

Question: How can we manipulate Eq.(11.6) , and rewrite it in the desired form as in (11.7)?

(i) We can change the variable from x to new variable t = ax+ b

(ii) That is correct, so let us then proceed.

Changing the integration variable we have
∫ ∞

−∞
(Tφ(x))∗ψ(x) dx =

∫ ∞

−∞
φ(ax+ b)∗ψ(x) dx

=

∫ ∞

−∞
φ(t)∗ψ((t− b)/a (dt/a) (11.9)

=

∫ ∞

−∞
φ(x)∗(1/a)ψ((x− b)/a) dx (11.10)

This gives us the desired answer

T †ψ(x) = (1/a)ψ
(
(t− b)/a)

)
. (11.11)
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Lecture 12

Hermitian and Unitary Operators

§1 Hermitian Operators

Definition 44 An operator A is hermitian if A† = A.

Definition 45 A linear operator U is called unitary if U † = U−1. In case of a finite dimen-

sional vector space, it is equivalent to demanding

UU † = I(orU †U = I).

Theorem )||(15 (When is an operator hermitian ?) Each of the following two statements

give condition for hermiticity of an operator.

(H1) An operator T is hermitian if and only if (Tg, f) = (g, Tf) holds for all f, g ∈ V .

(H2) In a finite dimensional vector space an operator T is self adjoint if and only if (f, Tf) is

real ∀f ∈ V .

Proof of (H1) : Let T be a hermitian operator. Using the definition of adjoint we have

(g, Tf) = (T †g, f)

or

(g, Tf) = (Tg, f) (∵ T = T †)

Let (g, Tf) = (Tg, f) for all f and g in the vector space. Then we get

(g, Tf) = (Tg, f) (given ) (12.1)

(g, Tf) = (g, T †f) (Use def of T †) (12.2)

(g, (T − T †)f) = 0 (12.3)

holds ∀g and f . Select g = (T − T †)f . This gives ‖(T − T †)f‖ = 0. Therefore,

(T − T †)f = 0 ∀f ∈ V . (12.4)

Hence T = T †
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Proof of (H2) : Let (f, Tf) be real. Then

(f, Tf) = (f, Tf)∗ given (12.5)

= (Tf, f) ( property of inner product ) (12.6)

= (f, T †f) ( def of adjoint ) (12.7)

Thus (f, Tf) = (f, T †f) holds ∀f ∈ V . This implies (f, (T − T †)f) = 0, hence T = T †.

Therefore, T is hermitian.

Theorem )||(16 If X is any operator we may write, X = A+ iB, where A and B are hermitian

operators.

The proof is easy. We write A = (X + X†)/2; B = (X − X†)/2i It is straight forward to

verify that A and B are hermitian and that X = A+B.

§2 Unitary Operators

Theorem )||(17 (When is an Operator Unitary ?) In a finite dimensional vector space, V,
the following conditions on an operator X are equivalent.

(U1) X is unitary.

(U2) (Xf,Xg) = (f, g) ∀f, g ∈ V

(U3) ‖Xf‖ = ‖f‖ ∀f ∈ V .

Proof of (U1) ⇒ (U2) : (Xf,Xg) = (f,X†Xg) = (f, g)

Proof of (U2) ⇒ (U3) : (U3) follows from (U2) by setting g = f in (U2).

Proof of (U3) ⇒ (U1) : Given that ‖Xf‖ = ‖f‖ ∀f ∈ V we have (Xf,Xf) = (f, f) .

This in turn gives (f,X†Xf) = (f, f) or

(f, (X†X − I)f) = 0∀f ∈ V

Thus (X † X − I) = 0. This means that X†X = I. In finite dimensional spaces we then

have the result that X is unitary.
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)||(Short Examples 5 Consider the Hilbert space L 2(−∞,∞) of square integrable functions.
We give some examples without a detailed discussion.

(5a) Let X̂ be defined as
X̂ψ(x) = eikxψ(x), k ∈ R

then
X̂†ψ(x) = e−ikxψ(x), k ∈ R

(5b) The parity operator P̂ defined by

P̂ψ(~x) = ψ(−vecx)

is hermitian, P̂ † = P̂ .

(5c) The adjoint of translation operator T̂ defined by

T̂ψ(x) = ψ(x+ a)

is given by .
T̂ †ψ(x) = ψ(x− a)

(5d) The translation operator T̂ defined above is a unitary operator.

§3 Properties of Eigenvalues and Eigenvectors

Theorem )||(18 (Eigenvalues and Eigenvectors of Hermitian Operators) Two important

properties of hermitian operators are given below.

(E1) The eigenvalues of a hermitian operators are real.

(E2) The eigenvectors of a hermitian operator corresponding to two distinct eigenvalues are

orthogonal.

Proof of (E1) : Let λ be an eigenvalue and f be eigenvector of T with Tf = λf . Since T is a

hermitian operator we have

(x, Ty) = (Tx, y), ∀x, y ∈ V . (12.8)

Therefore setting x = y = f in (12.8), we get (f, Tf) = (Tf, f) we get

(Tf, f) = (f, Tf) (12.9)

⇒ (λf, f) = (f, λf) (12.10)

∴ (λ∗ − λ)(f, f) = 0 (12.11)

As f 6= 0, (f, f) 6= 0 and hence we must have λ∗ − λ = 0 Therefore the eigenvalues of a

hermitian operator are real.

Proof of (E2) :To prove that two eigenvectors corresponding to a different eigenvalues are

orthogonal. Let Tf = λf and Tg = µg. and T be a hermitian operator T † = T and

λ 6= µ. Then proceeding as in proof of (E1)

(f, Tg) = (Tf, g) (Since T † = T )
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We have

(f, µg) = (λf, g)

or

µ(f, g) = λ∗(f, g) = λ(f, g)

because the eigenvalues λ, µ are real. For λ 6= µ the above equation implies that (f, g) = 0.

Hence f and g are orthogonal.

Theorem )||(19 ( Eigenvalues and Eigenvectors of Unitary Operators) (E3) If λ as an

eigenvalue of a unitary operator then |λ| = 1. It can be equivalently written in several

forms such as λ∗λ = 1, or λ∗ = 1/λ, or λ = eiα with α ∈ R.

(E4) The eigenvectors of a unitary operator corresponding to two distinct eigenvalues are or-

thogonal.

Proof of (E3) : Let U be a unitary operator having λ as an eigenvalue and f as an eigenvector.

Uf = λf (12.12)

⇒ (Uf, Uf) = (f, f), ( since U is unitary ) (12.13)

⇒ (λf, λf) = (f, f) (12.14)

⇒ λ ∗ λ(f, f) = (f, f) (12.15)

⇒
(
|λ|2 − 1

)
(f, f) = 0 (12.16)

⇒ |λ|2 = 1, ∵ (f, f) 6= 0 (12.17)

Therefore, |λ| = 1. This means that λ is phase and λ = exp(iα).

Proof of (E4) : Let λ and µ be two distinct eigenvalues of a unitary operator U and let f and

g be the corresponding eigenvectors. Thus

Uf = λf, Ug = µg, and λ 6= µ. (12.18)

Since U is unitary

(Uf, Ug) = (f, g) (12.19)

⇒ (λf, µg) = (f, g) (12.20)

⇒ (λ∗µ)(f, g) = (f, g) (12.21)

Since |λ| = 1, we have λ∗λ = 1, or λ∗ = 1/λ. The above equation then gives

[(µ/λ)− 1](f, g) = 0 (12.22)

∴ (f, g) = 0, ∵ µ 6= λ and (µ/λ− 1) 6= 0. (12.23)
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Lecture 13

Change of Orthonormal Basis and
Dirac Notion

===================================================================

§1 Representation in an Orthonormal Basis

Let E = {e1, e2, ..., eN} be an o.n. basis. A vector f ∈ V can be represented by its components

with respect to a basis obtained by expanding f in terms of the basis:

f = α1e1 + α2e2 + · · ·+ α3e3. (13.1)

Thus the vector f is represented by a column

f 7→




α1

α2

..
αn


 . (13.2)

The matrix representing an operator T has elements tjk which can be obtained by expanding

Tek in terms of the basis elements e1, e2, ..., eN again.

Tek =
∑

j

tjkej . (13.3)

When E is an o.n. basis, the numbers αk appearing in Eq.(13.2) are easily obtained by taking

the scalar product of Eq.(13.1) with ek. Thus we get

α1 = (e1, f); α2 = (e2, f); .....; αk = (ek, f). (13.4)

Similarly, tjk appearing in Eq.(13.3) are obtained taking scalar product of Eq.(13.3) with ej

and using the fact that E is o.n. set. This gives

tjk = (ej , T ek). (13.5)
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Thus a vector f and an operator T are represented, respectively, by a column and a matrix as

follows.

f 7→




(e1, f)
(e2, f)
...

(en, f)


 , (13.6)

T 7→ T =




(e1, T e1) (e1, T e2) · · · · · · (e1, T eN )
(e2, T e1) (e2, T e2) · · · · · · (e2, T eN )

· · · · · · (ej , T ek) · · · · · ·
(eN , T e1) (eN , T e2) · · · · · · (eN , T eN )


 . (13.7)

§2 Change of o.n. Basis

Thus representatives are easy to construct and expressions easy to remember for the case when

the basis in an o.n. basis. Next we shall discuss how the elements of the column and the matrix

change when a different basis is selected.

Theorem )||(20 Let E = {e1, e2, ..., eN} and U = {u1, u2, ..., uN} be two complete o.n. sets.

Define an operator X by

Xej = uj .

The operator X which takes an o.n. set E to another o.n. basis U is a unitary operator.

Proof :

Because both the sets E and U are o.n. sets we have

(Xei, Xej) = (ui, uj) = δij = (ei, ej)

or

(ei, X
†Xej)− (ei, ej) = 0 ⇒ (ei, (X

†X − I)ej) = 0 ∀ i and j.

This implies that (f, (X†X − I)g) = 0 for all f and g in the vector space. To see this expand

f =
∑

i αiei, and g =
∑

j βjej and consider

(f, (X†X − I)g) =


∑

i

αiei), (X
†X − I)

∑

j

βjej


 (13.8)

=
∑

i

∑

j

αij(ei, (X
†X − I)ej) (13.9)

= 0. (13.10)

Hence X†X − I = 0 , or X is unitary.
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§3 Dirac Bra-Ket Notation

In this lecture I will explain the Dirac bra-ket notation for vector spaces with inner product. This

notation is extremely useful for quantum mechanics. When an o.n. basis is selected in the vector

space, Dirac notation is very convenient and several formulas such concerning representations

and change of basis become simple and easy to remember.

The vector in a vector space are denoted by |f〉, called kets. The linear functionals on the

vector space are denoted as 〈g|, called bra. The action of a linear functionals on a vector is

written as a bracket < g|f > . The names bra and ket are derived from the bra(c)ket. A bracket

is split into two parts which are named as the bra and ket

(.) → (|) → 〈|, |〉.

In the inner product spaces a linear functionals ψ can be viewed as coming from some vector j

so that

ψ(f) = (j, f)

and the distinction between the vectors and linear functionals can be dropped, if we take note of

the correspondence of linear functional ψ with the vector j. We shall not talk about the linear

functionals any more.

The scalar product of two vectors |ψ〉 and |φ〉 is thus denoted by 〈φ|ψ〉.
Let E = {|e1〉, |e2〉, ..., |eN 〉} be an o.n. basis. If a vector |ψ〉 is written as linear combination

of the basis elements in E ,

|ψ〉 =
∑

αk|ek〉

the coefficients will be given by the scalar products αk = 〈ek|ψ〉. Substituting the value of α we

can write the expansion of |ψ〉 as

|ψ〉 =
∑

k

|ek〉〈ek|ψ〉.

The vector |ek〉〈ek|ψ〉 appearing inside the sum can be thought of as a linear operator Tk,

(≡ |ek〉〈ek|), which on the vector |ψ〉 gives |ek〉〈ek|ψ〉.

Tk|ψ〉 =
(
|ek〉〈ek|

)
|ψ〉.

The relation can be viewed as a statement that the relation |ψ〉 = ∑
Tk|ψ〉 holds for every vector

|ψ〉. Thus ∑T must be equal to identity operator. Hence we get

∑

k

|ek〉〈ek| = Î .

This relation is referred to as completeness relation.
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§4 Change Of O.N. Basis

Let x be a vector in a vector space. Let E and U be two o.n. bases. Let x and x denote the

components of the vector x w.r.t. the bases E and U respectively. Similarly let T denote the

matrix representing an operator T w.r.t. the first basis E . Let T be the matrix w.r.t. the second

basis U .

Let us take the first o.n. basis as E = {e1, e2, . . . , eN} then we have the following expressions.

xk = 〈ek|x〉, [T]jk = 〈ej |T |ek〉. (13.11)

If we take the second o.n. basis as U = {u1, u2, ..., uN} then we have the following expressions.

xi = 〈ui|x〉, [T]jk =< uj |T |uk > (13.12)

We want to find relations between

(i) components of x and x ,

(ii) elements of the matrices T and T. The change of basis can be achieved by using the

completeness relation. For example,

x i = 〈ei|x〉 = 〈ei|I〉x = 〈ei|
(∑

k

|uk〉〈uk|
)
|x〉 (13.13)

=
∑

k

〈ei|uk〉〈uk|x〉 =
∑

k

〈ei|uk〉x k
. (13.14)

This gives the required relation between the components of the vector x w.r.t. the two basis

sets E and U . Similarly,

[T] jk = 〈ej |T |ek〉 (13.15)

= 〈ej |
(∑

m

|um〉〈um|
)
T
(∑

n

|un〉〈un|
)
|ek〉 (13.16)

=
∑

m

∑

n

〈ej |um〉〈um|T |un〉〈un|ek〉 (13.17)

=
∑

m

∑

n

〈ej |um〉 [T]mn 〈un|ek〉. (13.18)

This gives the change of basis formula for the matrices representing the operators. If we introduce

a matrix S whose elements are given by

S jm = 〈ej |um〉,

the last equation is seen to be like matrix multiplication

T = STS†. (13.19)

Notice that the matrix S is unitary.

SS† = I = S†S. (13.20)
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To see this consider mn element of S†S

(S†S)mn =
∑

k

S†mkS kn =
∑

k

S∗kmS kn (13.21)

=
∑

k

〈ek|um〉∗〈ek|un〉 =
∑

k

〈um|ek〉〈ek|un〉 (13.22)

= 〈um|
(∑

k |ek〉〈ek|
)
|un〉 (13.23)

=
(
〈um|

)
Î
(
|un〉

)
= 〈um|un〉, use completeness relation (13.24)

= δmn. (13.25)

Therefore, the matrix S is a unitary matrix. This is just a statement of the fact that two

orthonormal basis set are related by a unitary operator.

Question for you: Verify that the matrix S is just the matrix for the linear operator Ŝ defined

by

S|ek〉 = |uk〉 (13.26)

in the basis set {|ek〉|k = 1, 2, . . . , N}.

Remark: ALL THESE RESULTS ARE VALID FOR FINITE DIMENSIONAL VEC-

TOR SPACES ONLY. THIER USE IN CASE OF INFINITE DIMENSIONAL VEC-

TOR SPACES REQUIRES A SEPARATE DETAILED DISCUSSION.
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Topics and References for Further
Study

The first part of the lecture notes should be supplemented by a study of the topics

listed below.

• Jordan canonical forms, Halmos [1], Sec. 56-58

• Direct Sum and Quotient Spaces, Halmos [1], Sec 18-22.

• Bilinear and Multilinear Forms Halmos [1], Sec. 23, 29-31

• Tensor Product of Vector spaces and Tensors Pankaj Sharan[3], Ch 5, Tulsi Dass and S.K.

Sharma[4], Ch. 3. Halmos Sec. 24-25

In continuation of the second part of the lecture note a study of the following

topics is recommended.

• Orthogonal sum vector spaces, Halmos [1].

• Spectral Theorem, Sadri Hassani[2], Ch 4

• Infinite Dimensional Vector Spaces, von Neumann [5] and [6], Ch II.

.
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