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Abstract

In an attempt to give an exact mathematical formulation of Bohr’s Corre-
spondence Principle, Heisenberg (June 1925) discovered the rules governing the
behaviour of quantum-theoretical magnitudes.In fall 1925 Born, Heisenberg and
Jordan and, independently, Dirac, formulated consistent algebraic schemes of quan-
tum mechanics. Early in 1926 Schrodinger developed wave mechanics. In quick
succession were discovered : Born’s probability interpretation of the wave function,
the transformation theory of Dirac, Jordan and F.London, Heisenberg’s Uncertainty
Relations and Bohr’s Principle of Complementarity. By September 1927 the basis
of a complete theory of atomic phenomena had been established. Aspects of this
development, in which Heisenberg played a central role, are presented here as a
tribute to his memory.



FOREWORD

Professor Werner HEISENBERG, one of the greatest physicists of all times, died on 1

February 1976. His distinguished career was marked by many scientific contributions and

activities in public life.

Werner Heisenberg, born on 5 December 1901 in Würzburg, studied physics in Munich

an Göttingen, and took his doctoral degree in 1923 with A. Sommerfeld. He worked in

1924/25 with Niels Bohr in Copenhagen, and was appointed professor at the University

of Leipzig in 1927. The 1932 Nobel Prize for Physics was awarded to him in 1933 for his

work in quantum mechanics. In 1941 he became Director at the Kaiser Wilhelm Institute

for Physics in Berlin and, in 1946, he took over the direction of the successor institution,

the Max Planck Institute for Physics in G öttingen, which was transferred to Munich in

1958. He retired in 1971.

After World War II, Werner Heisenberg played a leading role in the reconstruction of

science in Germany and in the development of European scientific collaboration, including

the first deliberations which led to the establishment of CERN. In 1952 he chaired the

Committee which was set up at the first session of the Interim Council, with the task of

preparing recommendations on type and energy range of accelerators to be constructed

by CERN. In addition to being one of the representatives of the Federal Republic of Ger-

many in various Council sessions Werner Heisenberg was a member of the Scientific Policy

committee of CERN from its creation in 1954 until 1961. He was the first Chairman of

the Committee and served in this capacity until 1957. His last official function at CERN

was the inauguration of the ISR in October 1971.

Werner Heisenberg made important contributions to many branches of theoretical

physics, in particular to the theory of turbulence, of ferromagnetism, of nuclear forces

and, in the last decades of his life, to elementary particle physics. His most fundamental

and celebrated work was on the foundation of modern quantum mechanics. This work

was reviewed by Professor Jagdish Mehra in a Memorial lecture entitled ”The Birth of

Quantum Mechanics”, delivered at the CERN Colloquium on 30 March 1976. I take great

pleasure in presenting this lecture as a CERN Report.

L.Van Hove

Research Director-General



THE BIRTH OF QUANTUM MECHANICS

Professor Van Hove, Ladies and Gentlemen : It gives me a great pleasure to address

this distinguished Colloquium, and I find it particularly moving that this occasion is ded-

icated to the memory of Werner Heisenberg.

Heisenberg made important contributions to the development of many fields of quan-

tum physics: atomic and molecular physics, physics of nuclei and elementary particles,

and quantum field theory −− but it is with the discovery of quantum mechanics that his

name is inalienably associated. The birth of quantum mechanics presents us with one of

the most remarkable episodes in the history of science; it is as rich, complex, dramatic,

and touching as my in the history of human thought.

It shall be presumptuous of me to pretend to invoke more than just a few images

dealing with the ideas and events which led to the birth of quantum mechanics, and I

invite you to share these images with me.

1. The Wolfskehl Endowment

The birth of quantum mechanics bears a curious relationship with Fermat’s Last Theorem

of 1637. In this theorem Fermat denied the existence of integers x, y, z, which satisfy the

equation, xn + yn = zn, forx, y, z 6= 0 and n > 2. This theorem has not yet been proved,

but it is probably the problem for which the greatest number of incorrect ’proofs’ has ever

been published.

In 1906 the mathematician Paul Wolfskehl form Darmstadt bequeathed a sum of

100, 000 Marks to the Royal Academy of Science in Göttingen to be given as an award

to the first person who, during the next 100 years (i.e. up to 13 September 2007), would

publish a complete proof of Fermat’s Theorem. In 1908, the Wolfskehl Commission −−
consissting of Ehlers, Hilbert, Kliein, Minkowski, and Runge −− decided to use the in-

terest on the principal, amounting to 5000 Marks per annum, for the purpose of inviting

prominent scientists as guest speakers to Göttingen. There were those who asked Hilbert

to submit the proof of Fermat’s Theorem himself to win the Wolfskehl prize, but he

laughed it off by saying that, ‘One should not kill the goose that lays the golden eggs.’

Henri Poincaré was the first person to be invited to Göttingen under the new arrange-

ment in April 1909. In his first talk, on 22 April, he spoke on Fredholm’s equations in

connection with the work of G.W. Hill and Helge von Konch. The relevance of this sub-

ject to quantum theory was not recognized until 1925. In his last lecture, on 28 April, on



‘La mécanique nouvelle’, the only one which he gave in French, Poincaré discussed the

Theory of Relativity −− incidentally, without mentioning the name of Einstein1.

Hendrik Antoon Lorentz was invited the following year. From 24 to 29 October 1910,

he delivered six lectures on ‘Old and New Problems of Physics’,which were subsequently

edited by Max Born and published in the Physikalische Zeitschrift. Lorentz devoted last

three of these lectures to the problem of the black-body radiation.

In spring 1913, Hilbert organized the Kinetischen Gas Kongress at Göttingen, the

lecturers at which were Planck, Nernst, Debye, Lorentz, and Smoluchowski3. In the sum-

mer semester of 1914, Sommerfeld gave a series of lectures on problems of mathematical

physics, and in 1915 Hilbert invited Einstein to Göttingen. During the next three years

the distinguished invitees were, respectively, Marian v. Smoluchowski4, Gustav Mie5 and

Max Planck6.

At Hilbert’s request extra funds from the Ministry of Education were added to augment

the income from the interest on the Wolfskehl endowment, making it possible to invite a

prominent scientist as a visiting professor for up to a semester each year in the Faculty

of Mathematics and Natural Sciences at Göttingen. The first man to be so honored

after World War I was Niels Bohr. The Wolfskehl Commission invited Bohr to lecture at

Göttingen in spring 1921 on the problems of atomic theory7. Illness prevented him from

doing so in 1921, but he delivered his lectures from 12 to 22 June 1922. Later on that

year Bohr was awarded the Nobel Prize for Physics, in which he succeeded Einstein8.

2. Bohr’s Lectures : Atomic Structure

In seven lectures at Göttingen, which came to be called the Bohr Festival, Niels Bohr cov-

ered the full range of the theory of atomic structure, beginning with Ernest Rutherford’s

(1911) nuclear model of the atom and his own attempt, in 1913, to use quantum theory

to explain some of the most important features of the atom9. For instance, he discussed

the formula connecting the discrete frequencies ν of the spectrum of hydrogen with the

parameters determining its constitution :

ν =
2π2me4

h3
(

1

n2
1

− 1

n2
2

), (1)

where m and e are the mass and charge of the electron, respectively, h is Planck’s con-

stant, and n1, n2 are positive integers with n1 < n2.



During ten years of exciting work since 1913, outstandingly skillful experimentalists

and profound theoreticians −− men like Friendrich Paschen and Arnold Sommerfeld −−
had prepared the ground for an extremely successful theory which seemed to explain all

the known facts about atoms : this was Bohr’s theory of the periodic system of elements,

based on detailed considerations of their structure. By the end of 1922 this theory was

to receive a brilliant confirmation by the experimental work of Dirk Coster and George

de Heavesy. Coster and de Heavesy, at Bohr’s Institute in Copenhagen, demonstrated

the existence of an element with the atomic number Z = 72, whose chemical properties

showed a great similarity to those of zirconium and a decided difference from those of

the rare earths. Alexander Dauvillier, working with Maurice de Broglie in Paris, had, a

little earlier, assigned the new element to the rare earths based upon his x-ray studies

−− but this assignment seemed to be incompatible with Bohr’s theory, and the element

was appropriately christened Hafnium in honour of its birthplace.

In his Göttingen lectures, Niels Bohr discussed in detail the principles of his theory of

atomic structure and their application to actual configurations. The principal idea was

that the mechanical orbits of the electrons, moving in the Coulomb field of the nucleus,

were determined by the phase integral subject to the quantum Condition,∮
pdq = nh, (2)

a condition which can be traced back to Planck’s treatment of the heat radiation in 1906.

Here p is the momentum and q the position coordinate of an electron performing a peri-

odic motion.

Beginning in 1915, Arnold Sommerfeld examined, in his theory of the hydrogen atom,

the systematic use of quantum conditions. For instance, in the non-relativistic approxima-

tion, the radial quantum number, nx, and the azimuthal quantum number, nφ, determine

the Kepler ellipses of the electron by the equations,∮
prdr = nrh and

∫ 2π

0

pφdφ = nφh. (3)

The sum of both quantum numbers,

n = nr + nφ (4)

plays the role of the principal quantum number n which had already made its appearance

in Bohr’s 1913 theory of the Balmer spectrum.

Four non-hydrogenic atoms, i.e. atoms having more than one electron, the stability of

the orbits could not be guaranteed by the simple quantum conditions, given by Eqs. (2)



and (3), because repulsion from the other electrons in the atom causes serious pertur-

bation of the planar motions. The new degrees of freedom, which thus arise, could be

described by other quantum numbers, the hope being that the motions in an atom remain

multiply periodic.

By carefully estimating all the interactions between the electrons and the nucleus, and

between electrons and electrons, Niels Bohr arrived at the explanation of the structure

of atoms including the existence of finite groups of electrons having very similar ener-

gies. The maximum number of electrons in these groups seemed to be 2, 8, 8, 18, 18, 32, in

agreement with the observed lengths of periods in the system of chemical elements.

In his lectures at Göttingen, Bohr emphasized the physical principles of the theory,

especially the two which were most useful : First, Paul Ehrenfest’s Adiabatic Principle

which stated that by means of an ‘adiabatic’ change one could transform an allowed

motion into another allowed motion; second, his own Correspondence Principle which

made it possible, in the limit of high quantum numbers, to relate all properties of an

atomic system determined by the quantum conditions to analogous properites of the

system determined by means of classical mechanics. For instance, this consideration of

analogy required that the charcteristic frequency of the quantum radiation from the atom

should pass, in the correspondence limit, into the frequency of the electron’s motion

around the atom.

3. Bohr’s Audience

Bohr’s lectures attracted a large audience. All the physicists and mathematicians, young

and old, from Göttingen, including Born, Franck and Hilbert, attended his lectures. Many

others came to listen from distant universities, such as Ehrenfest from Leiden and Som-

merfeld from Munich. Sommerfeld, next to Bohr the foremost representative of atomic

theory, had two of his brightest students there. Bohr’s lectures had an historic impact

upon Wolfgang Pauli and Werner Heisenberg, and perhaps it is no exaggeration to say

that quantum theory was the main beneficiary of Fermat’s Theorem.

At one point during his lectures Bohr discussed the calculation of the quadratic Stark

effect that had been made by Hendrik Kramers (1920)10 on the basis of correspondence

considerations. Heisenberg raised a serious objection because the result did not agree

with any of the classical frequencies of the atom. On the other hand, the phenomenon of

quadratic Stark effect could be related to the dispersion of light of small frequencies by

bound electrons in an atom; moreover, in the existing description of dispersion only the



classical frequency of the electron’s always appeared.

Bohr gave an evasive answer to this objection −− the correct answer was in fact not

available until spring 1925 −− but he was very impressed with the incisiveness of the

young man who had put him on the spot with the question concerning the validity of

the correspondence principle in treating the quadratic Stark effect. He invited the young

Heisenberg to go for walks with him on the Hainberg in Göttingen to discuss the problems

of atomic theory.

Werner Karl Heisenberg was born on 5 December 1901 in Würzburg in Bavaria. He

attended the Maximilian Gymnasium at Munich, where he studied classical languages,

mathematics, and a smattering of the sciences. In the spring of 1919, as a young man of

seventeen, Heisenberg did voluntary sentry duty with the Cavalry Rifle Command during

the revolution involving the ‘Räte-republik’. During this service he often spent nights

on the roof of the Theological Seminary Building, where he brushed up on his Greek by

reading with great fascination Plato’s Timaeus.11 Platonic ideas about the structure of

matter left a deep impression on his mind and, at times, guided his later views on atomic

and particle physics.

Heisenberg entered the University of Munich in fall 1920. Under the friendly guid-

ance of Sommerfeld he was immediately drawn into research on atomic theory : his task

was to explain the frequencies of the lines observed in the so-called anomalous Zeeman

effects on the basis of Bohr’s theory of atomic constitution −− that is, as differences

of energy terms determined by quantum numbers. Heisenberg solved the problem by

introducing half quantum number which had not occurred before in the description of

atomic phenomena. Pauli derided Heisenberg’s solution by saying: ‘Now you introduce

half quantum numbers, then you will introduce quarters and eighths as well, until finally

the whole quantum theory will crumble to dust in your capable hands.’12

Sommerfeld, himself given to the magic of integral quantum numbers, did not particu-

larly appreciate the half-quantum numbers, but he admired Heisenberg’s unconventional

approach. He invited Heisenberg in helping him to reformulate Woldemar Voigt’s ’phe-

nomenological’ theory of the anomalous Zeeman effect, and they published a joint paper

in 1922 on the intensities of the anomalous Zeeman lines.13 The results of this work re-

mained valid even after quantum mechanics was discovered. Heisenberg was thus well

acquainted with Bohr’s theory before he first met him in Göttingen.

For Heisenberg’s doctoral dissertation, Sommerfeld gave him a problem of classical



hydrodynamics: the transition from laminar into turbulent flow. Heisenberg developed

his own approximation methods to deal with the non-linear problem, and showed that the

Poiseuille flow between two parallel walls would become unstable if the Reynold’s number

connected with the problem exceeded the value of about 1000.14 This result obtained in

1923, was re-confirmed in 1952 by L.H. Thomas.15 Heisenberg’s early success with the

problem of turbulence provided him with a certain love of non-linear theories to which he

always remained loyal.

Heisenberg’s oral examination for the doctorate was a near disaster. In addition to

theoretical physics, in which he was examined by Sommerfeld and did very well, he had

to take the examination in experiential physics from Willy Wien (of Wien’s law fame).

Wien asked Heisenberg questions on the theory of storage batteries and the resolving

power of microscopes, telescopes, and the Fabry-Perot interferometer −− questions which

Heisenberg could not answer. Wien insisted on failing him, but Sommerfeld’s intervention

saved the day, and Heisenberg got the lowest possible grade of Rite or just sufficient

according to the rules.16 As a dutiful German student, Heisenberg would learn about

the resolving power of optical instruments, and would apply these ideas to his thought-

experiment with the γ−ray microscope in relation to the understanding to the uncertainty

principle in 1927.

4. The Breakdown of Calculations : Helium Problem

and Anomalous Zeeman Effects

Right after the examination in July 1923, totally dejected on account of the onslaught

of willy Wien, Heisenberg went to Göttingen to find shelter under Max Born. Born de-

scribed his coming as follows : ‘He looked like a simple peasant boy, with short, fair hair,

clear bright eyes and a charming expression. He took his duties as an assistant more

seriously than Pauli and was a great help to me. His incredible quickness and acuteness

of apprehension has always enabled him to do a colossal amount of work without much

effort. Having finished his hydrodynamical thesis, he worked on atomic problems partly

alone, partly in collaboration with me, and helped me to direct my research students.’17

With Born, Heisenberg embarked upon a systematic study of complex atoms with the

help of the perturbation methods of classical mechanics and astronomy. Born and Heisen-

berg treated the helium atom as a ’multiply periodic’ system.18 By applying quantum

conditions of the form of Eq.(2) they found that the energy states which they calculated

did not agree with the experimental data; the ionization energy of parahelium turned out

to be 4 volts higher than the observed value. Heisenberg19 had already found, however,



that if he took the azimuthal quantum number of the ground state to be 1
2
, that is,∮

pφdφ =
1

2
h, (5)

then the experimental value of 24.6 volts for the ionization energy could be reproduced.

Again, the half-quantum number made its appearance.

From Copenhagen, Pauli reported Bohr’s reaction, and his own, concerning this mat-

ter. Bohr though that it was the mechanics that was wrong and had to be righted, and

one could dispense with the half quantum numbers. Bohr had also suggested to Pauli to

study the problem of the anomalous Zeeman effects −− upon which Sommerfeld, Land

’e and Heisenberg had worked earlier, but Bohr disapproved of their approaches −− and

Pauli reported to Heisenberg about his preliminary conclusions on this matter.20 Heisen-

berg’s exasperation was complete. As he wrote to Sommerfeld : ‘I am convinced about

the incorrectness of Pauli’s ideas, but what I find most terrible is the fact that Bohr

considers all that is wrong to be right, and all that is right to be wrong.21 Heisenberg was

beginning to make the acquaintance of Bohr’s dialectical thought and of Pauli’s criticism,

while learning to cope with the difficulties which atomic theory presented.

Pauli, on the other hand, was also not particularly happy with what atomic physics

looked like at the time. Five years earlier, in 1918, the eighteen year old Wolfgang

Pauli had gone from Vienna to study physics with Sommerfeld. Already before coming

to Munich he had completed a paper on the energy tensor in the gravitational field22,

and by December 1920 he had written his masterly review article23 on Relativity for the

Encyklopädie der mathematischen Wissenschaften, a work which Einstein called ’mature

and grandly conceived’24. Pauli had also actively engaged himself on problems of atomic

theory, completing his doctorate in summer 1921 with a thesis on the hydrogen molecule

ion, in which he pointed out the difficulties of applying the known methods.25 In the

fall of 1921 Pauli spent a semester in Göttingen, collaborating with Born on the system-

atic perturbation theory of complex mechanical systems.26 Afraid that the atmosphere

of Göttingen might make a mathematician of him, he accepted to go to Hamburg as the

assistant of Wilhelm Lenz, and in fall 1922 he went to Copenhagen at Bohr’s invitation to

assist him with the German edition of his long memoir on atomic structure.27 This was,

of course, only an excuse to get Pauli to come to Copenhagen ; Bohr, in fact, needed him

to tackle numerous difficult problems of atomic theory, including the anomalous difficult

problems of atomic theory, including the anomalous Zeeman effect. It was during this

stay that, as Pauli recalled many years later, ’A colleague, who met me strolling rather

aimlessly in the beautiful streets of Copenhagen, said to me in a friendly manner, ”You

look very unhappy,” whereupon I answered fiercely, ”How can one look happy when he



is thinking about the anomalous Zeeman effect?”28 Within less than two years he will go

on to discover the Exclusion Principle which bears his name.29 However, by the end of

1924 both Pauli and Heisenberg were convinced that an explanation of the anomalous

Zeeman effects of spectral lines could not be achieved by simply introducing half quan-

tum numbers, without invoking really new ideas, such as perhaps Bohr’s notion of the

’Unmechanischer Zwang’ or non-mechanical stress.

In view of the connection30 between the multiplet structure of spectral lines, such as

the relativistic double structure of the lines of the Balmer spectrum and the anomalous

Zeeman effect, Pauli declared that the existing quantum theory could not even be relied

upon to provide the understanding of the hydrogen atom.

Thus, by about the end of 1924, the joyful confidence which had prevailed at the Bohr

Festival in June 1922, had been eroded, and the difficulties of atomic theory seemed to

be insurmountable.

5. A Fundamental Problem : The Light - Quantum

Even Bohr was upset. Other difficulties had arisen that assailed his conception of atomic

phenomena based on the correspondence principle, especially on account of the discovery

of the Compton effect in October 1922.31 This effect was immediately explained by Comp-

ton and, independently, by Debye as the directed scattering of individual light-quanta or

photons by electrons, with resultant recoil of the electron, thus conserving momentum

and energy in individual atomic processes.32

The Compton effect was proof positive of the existence of light-quanta, which had

been doubted by many serious physicists (including Max Planck) ever since Einstein in-

troduced them in 1905 and explained the photoelectric effect.33 Bohr himself had used the

emission and absorption of light-quanta in his theory of the hydrogen spectrum merely as

a heuristic device, without ever believing in their existence.34 Like Planck, Bohr believed

that a merely ’corpuscular theory of light’ would lead to enormous difficulties in explaining

electrostatic fields, and one would have to sacrifice some of the proudest achievements of

Maxwell’s electrodynamics. Bohr did not see how the correspondence limit or the analogy

between the light-quantum and classical wave radiation could be established, and he had

declared ; ’Even if Einstein sends me a cable announcing the proof of the light-quantum,

the message cannot reach me because it has to be propagated by electromagnetic waves.35

Yet Bohr was extremely bothered by the problem of explaining the Compton effect



without the light-quantum. He was therefore very glad when, towards the end of 1923,

the young American from Harvard, John Slater, brought to Copenhagen the idea of the

’virtual oscillator’ by means of light-quanta with the continuous wave theory of the elec-

tromagnetic field.36 On the basis of this idea Bohr, Kramers and Slater37 developed the

outline of a new theory of radiation, which Kramers38 applied to the theory of dispersion.

The quantum theory of dispersion had originated in 1921 when Rudolf Ladenburg39

made a successful application of the correspondence principle to the translation into the

quantum language of the analysis that was used in the classical theory. In place of the

classical electrons in motion within the atom, Ladenburg had introduced into the formu-

las transitions between stationary states, so that instead of the atom being regarded as

a Rutherford planetary system of a nucleus and electrons, obeying the laws of classical

dynamics, its behaviour with respect to the incident radiation was predicted by means of

calculations based on what Bohr, Kramers, and Slater now called the ’virtual oscillators’.

Kramers38 immediately extended Ladenburg’s dispersion formula by taking into ac-

count both types of dispersion effects of atoms in an arbitrary state n: that is, those

connected with the absorption of characteristic frequencies, νa(n + α, n), and their sub-

sequent emission, as well as the ones which had not been considered by Ladenburg, i.e.

those connected with the emission of frequencies, νe(n, n − β),and their subsequent ab-

sorption. These frequencies gave rise to a negative contribution in the dispersion formula

for the induced electric moment M,

M = E
2

h

∑
α

[Γa(n+ α, n)νa(n+ α, n)

ν2a(n+ α, n)− ν2
− Γe(n, n− α)νe(n, n− α)

ν2e (n, n− α)− ν2
]

(6)

where E is the electric field of incident wave, Γe corresponds to Einstein’s induced emission40,

and both Γa and Γe correspond to the absolute squares of the Fourier coefficients, Aτ , of

the electric moment of the unperturbed atom, as Born41 showed in 1924 in a systematic

study of Kramers’s dispersion theory.

For the incident light of high frequencies, i.e. ν � νa, νe, the electron in the hydrogen

atom should behave like a free classical electron. The corresponding classical formula for

the scattering of X-rays by one electron had been obtained by J.J. Thomson 42 in 1907 as

M = − e2E

4π2m

1

ν2
(7)

By comparing Eq. (6) & Eq. (7) in the high frequency limit, W. Thomas 43 and W.Kuhn
43, independently, obtained the sum rule,∑

i

pi =
8π2m

e2h

∑[
Γaνa − Γeνe

]
= 1 (8)



where pi is the number of dispersion electrons. The number on the right-hand side is 1

for hydrogen and 2 for helium.

The results of dispersion theory were indeed encouraging, but the conceptual frame-

work in which Bohr had presented the Bohr-Kramers-Slater radiation theory in 1924 got

into serious trouble in spring 1925. In describing the dispersion of light waves by atoms it

had been assumed that the processes of emission and absorption in atoms, distant from

each other, were statistically independent, and that in individual processes of emission and

absorption energy and momentum were not conserved, in contradiction to the explanation

of the Compton effect on the basis of Einstein’s light-quantum. Niels Bohr believed that

energy and momentum were only statistically conserved in atomic processes. Even when

this notion was first proposed in 1924, men like Einstein and Pauli, who believed in strict

energy-momentum conservation as the divine plan of an orderly universe, regarded Bohr’s

idea as being nothing short of immoral. This indeed was the beginning of the Einstein-

Bohr discussions concerning the statistical interpretation of quantum theory that were

yet to come.

In April 1925 Walther Bothe and Hans Geiger obtained the results of their coincidence

experiment, showing that the secondary Compton radiation indeed emerged after scat-

tering by a single electron.45 This simple result represented the demise of the radiation

theory of Bohr, Kramers and Slater, and the triumph, not only of virtue in the form of

energy-momentum conservation, but of its modern vehicle, the light-quantum. Einstein

was convinced that it had to be so, and was glad that it was so. Bohr wrote a touching

letter to Rutherford about the terrible difficulties of physics, or of physics as he had con-

ceived it to be, and told him how miserable he was.46

In the same month, April 1925, Werner Heisenberg began to ponder about calculat-

ing the intensities of hydrogen lines by the ’sharpened’ application of a correspondence

principle, which had been employed successfully in dispersion theory.

6. Sharpening the Correspondence Principle

Heisenberg had gone for his first visit to Copenhagen at Easter 1924. He had looked

forward to criticizing Bohr’s methods and results in atomic theory. Before he had the

chance, however, Bohr took him on a walking tour of Denmark, showing him the sights

and talking to him about history and philosophy, and finally physics. Heisenberg was

charmed. Well, he had known Sommerfeld – who was a great teacher and a good man,

but after all he was a ’Geheimrat’. And Born – again, Born was a good formalist, a



friendly man, but rather distant. Bohr was it. He was friendly, inspiring, kind, and he

had thought about the problems of atomic physics like no one else. Heisenberg had gone

to Copenhagen to battle against the correspondence principle with the prophet himself ;

instead he became its evangelist.

Heisenberg returned to Copenhagen for six months in fall 1924. He worked with Bohr

and Kramers on specific problems, in which he sought to formulate the content of the

correspondence principle in terms of equations from which new physical results could be

derived. For instance, he treated the problem of the polarization of resonance fluores-

cence light emitted by atoms.47 Together with Kramers, Heisenberg extended Kramers

dispersion formula, Eq.(6), to the incoherent scattering of light by atoms, that is, to cases

in which the frequency ν of the scattered light is changed, and is given by,

ν ′ = ν ± νqu′ (9)

where νqu is one of the characteristic frequencies of the atom.48

The successes thus obtained by what he called the sharpening [Verschärfung] of the

correspondence principle increased Heisenberg’s confidence in the Copenhagen approach,

and he hoped, as he recalled later, that ’Perhaps it would be possible one day, simply by

clever guessing, to achieve the passage to a complete mathematical scheme of quantum

mechanics.’49

In April 1925 Heisenberg returned to Göttingen to take up his duties as Privatdozent

during the summer semester.

7. Heisenberg’s New Scheme

In Göttingen Heisenberg sought to guess the intensities of the hydrogen lines, but in this

specific problem he failed. He concluded that the difficulties arising from the rules of

quantization were of a more general nature and had to be treated first. These difficulties

were due, not so much to a departure from classical mechanics, but rather to a breakdown

of the new kinematics, underlying this mechanics. In his search for the new kinematics,

Heisenberg employed a completely new idea : he assumed that the equation of motion of

an electron, say

ẍ+ f(x) = 0 (10)

could be retained, but the kinematical interpretation of the quantity x as a position

depending on time had to be rejected. Now what kind of quantities should be substituted



in the equation of motion ?

In a classical periodic motion x(t) can be expanded in a Fourier series,

x(t) =
∞∑

α=−∞

aαe
iαωt (11)

In quantum theory, the coefficients aα and the frequency ω depend on a quantum number

n. Therefore, instead of Eq. (11) Heisenberg wrote x(t) as

x(t) =
∞∑

α=−∞

aα(n)eiαωnt (12)

He then replaced the terms of the Fourier series in Eq. (12) by a new kind of terms,

a(n, n− α)eiω(n,n−ω)t (13)

which correspond to the transition from n to n − α; the time factor ω(n, n − ω) is 2π

time the frequency of light in this transition. For Heisenberg, the main problem was the

calculation of the intensity of radiation emitted in a transition P → Q. He knew that

this intensity is proportional to Einstein’s emission probability, APQ, and he assumed this

probability to be proportional to the absolute square of a, that is

APQ = |a(n, n− α)|2 (14)

He motivated the introduction of a(n, n−α) by saying that the intensities and, therefore,

|a(n, n− α)|2, are observable, in contrast to the functions x(t).

From the classical combination law of frequencies,

ν(n, α) = ν(n, β) + ν(n, α− β) (15)

re-interpreted quantum-theoretically by Heisenberg as,

ν(n, n− α) = ν(n, n− β) + ν(n− β, n− α) (16)

it became ’almost inevitable’ [’nahezu zwangslaufig’] to require that the coefficients C(n, n−
α) of the product of two re-interpreted Fourier series,

x(t)y(t) =
∑
α

C(n, n− α)eiω(n,n−α)t (17)

should obey the product rule,

C(n, n− α) =
∑
β

A(n, n− β), B(n− β, n− α) (18)



By this re-interpretation the correspondence principle was incorporated into the very

foundations of his kinematical scheme.

Heisenberg noticed that Eq. (18) introduced a great new difficulty : whereas in clas-

sical theory x(t)y(t) is always equal to y(t)x(t), this is not necessarily the case with the

definitions Eq. (17) & Eq. (18). Therefore, he concluded that, in general, it was not clear

how to formulate a product of two dynamical variables in quantum theory.

Rather than being discouraged by the unusual situation which had never before oc-

curred in physics, and which he did not comprehend, Heisenberg looked for an example in

which he could employ his quantum-theoretical re-interpretation [‘Umdeutung’] of classi-

cal mechanical quantities by avoiding the new difficulty concerning the product. He chose

the anharmonic oscillator, described in classical theory by,

ẍ+ ω2
0x+ λx3 = 0 (19)

in which the perturbation term, λx3, involves only the products of x(t)′s. Assuming the

perturbation term to be a small correction, he decided to employ the classical perturbation

method, that is, he used the Ansatz,

x(t) = a1 cos(ωt) + λa3 cos(3ωt) + λ2a5 cos(5ωt) + · · · ., (20)

and re-interpreted it quantum theoretically as,

x(t) = a(n, n− 1) cos[ω(n, n− 1)t] + λa(n, n− 3)[cos ω(n, n− 3)t] + · · · . (21)

He also expanded the frequencies in a power series in λ as

ω(n, n− 1) = ω0(n, n− 1) + λω1(n, n− 1) + · · · etc. (22)

By substituting these assumptions, i.e. Eq. (21) and Eq. (22), in Eq. (19), he obtained,

for λ = 0,

[ω2
0 − ω2(n, n− 1)]a(n, n− 1) = 0 (23)

the harmonic oscillator solution, and, in the first approximation,[
ω2
0 − ω2(n, n− 3)

]
a(n, n− 3) + a(n, n− 1)a(n− 1, n− 2)a(n− 2, n− 3) = 0 (24)

for the anharmonic oscillator.

Heisenberg found that the a(n, n−α)′s, the transition amplitudes’ as he called them,as

solutions of the equations of motion Eq. (23) or Eq. (24), were determined only upto a

constant, and he did not know what to do with this constant. This was the beginning of

June 1925, and his programme was stuck.



8. Helgoland and the Joy of Discovery

With the coming of spring in 1925 Heisenberg had developed a case of severe hay fever

which would just not leave him, and he decided to take a week or ten days off in June

1925 at the rocky island of Helgoland in the North sea. At Helgoland, not only did he

cure his hay fever but wiped the nose clean of the chronic colds of erstwhile problems of

atomic mechanics. It was of this discovery that Dirac later said : ’we were both young

men at the same time, working on the same problem. He succeeded where I failed’.50

At Helgoland Heisenberg divided his time in taking long walks, reading Goethe’s

West-Östlicher Divan, and seeking to give his vague ideas on quantum mechanics a more

definite shape.51 There he solved two problems.

First, he had to obtain the quantum condition in the new scheme that would be

equivalent to Eq. (2). In one dimension, Eq. (2) can be written as∫
mẋ dx = J = nh, (25)

integrated over a full period of the motion. Substituting the Fourier series, Eq. (12), for

x, he obtained,

nh = 2πm
∞∑

α=−∞

|aα(n)|2α2ωn (26)

Heisenberg replaced this formula by the one obtained by differentiation w.r.t. n, that is,

h = 2πm
∞∑

α=−∞

α
d

dn
(αωn|aα|2), (27)

where the expression within the parenthesis is defined for n integer only. Heisenberg

regarded this replacement as being more natural from the viewpoint of the correspondence

principle. Using Eq. (27) as an intermediate step, he replaced the derivative with a

difference and obtained,

h = 4πm
∞∑

α=−∞

{
|a(n, n+ α)|2ω(n+ α, α)− |a(n, n− α)|2ω(n, n− α)

}
(28)

Eq. (28) is Heisenberg’s quantum condition, and is equivalent to the sum rule of Kuhn

and Thomas Eq. (8). Since for the ground state no transition is possible, one has to put

a(n, n− α) = 0 (29)

if n is the quantum number of the ground state. In Eq. (14) Heisenberg had already as-

sumed the squares, |a(n, n− α)|2, as being proportional to the probabilities of transitions



n→ n− α.

The derivation of the quantum condition Eq. (28) and the consequent determination

of the transition amplitudes was thus the first problem that was solved. The second

problem, still nagging Heisenberg, was whether energy conservation will hold in the new

scheme. After all, this question had become vital after the outcome of the Bothe-Geiger

experiment.

In classical mechanics, the conservation of energy immediately follows from the equa-

tion of motion of the anharmonic oscillator, Eq. (19), which, when multiplied by mẋ can

be written as,
d

dt
H =

d

dt

[1

2
mẋ2 +

1

2
mω2

0x
2 +

1

4
λx4

]
= 0 (30)

where H, the quantity within the bracket, is evidently the energy and is conserved. Such

a relation need not be satisfied when Eq. (30) is re-interpreted quantum-theoretically,

and Heisenberg went through the calculation of the terms up to the second order in λ,

making errors along the way and re-checking them. He found that no time-dependent

terms remained in the kinematically re-interpreted Hamiltonian.

The example of the an-harmonic oscillator showed him that a dynamical problem in

quantum theory could be solved with the help of his scheme. As he recalled : ’It was

almost three o’clock in the morning before the final result of my computations lay before

me. The energy principle had held for all the terms, and I could no longer doubt the

mathematical consistency and coherence of the kind of quantum mechanics to which my

calculations pointed. At first, I was deeply alarmed. I had the feeling that, through the

surface of atomic phenomena, I was looking at a strangely beautiful interior, and felt al-

most giddy at the thought that I now had to probe this wealth of mathematical structures

nature had so generously spread out before me. I was far too excited to sleep, and so, as

a new day dawned, I made for the southern tip of the island, where I had been longing to

climb a rock jutting out into the sea. I now did so without too much trouble, and waited

for the sun to rise. 52 Heisenberg was happy. With this happiness, the blissful experi-

ence of new knowledge, though still not recognizing fully that in his quantum-theoretical

scheme the key had been found to solve atomic problems consistently, Heisenberg returned

to Göttingen.

On the way back he stopped to see Pauli in Hamburg. Pauli was his critical genius,

and he had learned to respect Pauli’s critical faculties since their first encounter in Som-

merfeld’s Seminar in Munich in 1920. Pauli encouraged him to go on. During the next



couple of weeks Heisenberg exchanged several letters with him, and on 9 July 1925 sent

him the manuscript of the finished paper. Pauli’s opinion was favourable : ‘It was the

Morgenröte,’ the beginning of the dawn in quantum theory, he said.

Having received Pauli’s favourable verdict, Heisenberg gave the paper53, around the mid-

dle of July, to Max Born, and asked him to do with it what he thought was right.

9. The Matrix Formulation of Quantum Mechanics

When Born read Heisenberg’s paper he was, as he has said, just ’fascinated’. ’ I began

to ponder about his symbolic multiplication,’ he said, ’and was soon involved in it that

I thought the whole day and could hardly sleep at night... In the morning I suddenly

saw the light : Heisenberg’s symbolic multiplication was nothing but the matrix calculus,

well-known to me since my student days from the lectures of Rosanes in Breslau.’54

Born put Heisenberg’s quantum condition, Eq. (28), into the matrix notation as∑
R

[
p(nk)q(kn)− q(nk)p(kn)

]
=

h

2πi
(31)

and determined that the two matrix products pq and qp were not identical. Born guessed

that the non-diagonal elements of the matrix pq−qp were zero, and the quantum condition

could be written, in general, as

pq − qp =
h

2πi
1 (32)

(where 1 is the unit matrix), but it was only a guess and he could not prove it. The proof

was given, independently, by Jordan and Dirac.

A couple of days later, on 19 July 1925, Born travelled from Göttingen to Hanover to

attend a meeting of the German physical Society, where Pauli also came from Hamburg.

At the railway station he told Pauli about the matrices and his difficulties in finding the

value of the non-diagonal elements. Born invited Pauli to collaborate with him, to which

Pauli gave a sarcastic refusal by saying to Born : ‘Yes, I know that you are fond of tedious

and complicated formalism. You are only going to spoil Heisenberg’s physical ideas by

your futile mathematics.’55

Pauli genuinely believed that the new quantum theory was Knabenphysik, or the

young man’s game, such as Heisenberg and himself, and that Born should better stick

to his work on crystal lattices. He never really forgave Born for what he believed was

’poaching’ on the new territory. To Kronig Pauli wrote : ’Heisenberg’s mechanics has

again given me hope and joy in living [Mind you, here is a young man just turned twenty



five]. It has not yet brought the solution of the riddle, but I believe that it is again possible

to go forward. One must first seek to liberate Heisenberg’s mechanics from Göttingen’s

[i.e. Max Born’s] deluge of formal learning [formalen Gelehrsamkeitsschwall] and better

expose its physical essence.’56 Pauli himself decided not to interfere in the development

of Heisenberg’s ideas and plans.57

On his return from Hanover, Born immediately persuaded Jordan to help him in his

work, which led to Born and Jordan’s matrix formulation of quantum mechanics, being

completed on 27 September 1925.58 This paper contained a resume of matrix methods,

the interpretation of Heisenberg’s symbolic multiplication, the proof of the formula for

the product difference of pq and qp Eq. (32), proof of energy conservation, and the proof

of Bohr’s frequency condition. It already contained an attempt, made entirely by Jor-

dan, at the quantization of the electromagnetic field by regarding its components as

matrices. This paper was the systematic formulation of matrix mechanics, in which the

Göttingen Gelehrsamkeit served in providing method to madness.

Further development towards the completion of the matrix scheme of quantum me-

chanics began immediately afterwards in the collaboration of Born, Heisenberg and Jor-

dan. This collaboration began when Jordan wrote a letter to Heisenberg early in Septem-

ber 1925 – Heisenberg was in Copenhagen for a few weeks before he returned to Göttingen

for the winter semester – with Heisenberg and Born and Jordan, all contributing their

bits. The general editing of the paper was done by Jordan, and the leading introduc-

tion was written by Heisenberg. This paper by Born, Heisenberg and Jordan, was thus

the third paper in the series after Heisenberg’s discovery53, and it gave a logically con-

sistent exposition of matrix mechanics. It was completed by the end of October 1925,

and is usually called the ‘Drei-Manner Arbeit’.59 It was really a learned paper, bringing

in all the Gelerhsamkeitsschewall of Göttingen – eigenvalues and eigenvectors, canonical

transformations, principal axis transformation, Hilbert’s quadratic forms in an infinite

number of variables, general commutation relations, and physical applications – including

the quantization of the electromagnetic field and the calculation of fluctuations in this

field by Jordan60. This paper contained essentially the entire apparatus of modern matrix

mechanics, and is one of the most learned papers in scientific literature.

For all we know, Pauli might have wished that he had participated in this game ; as

it was, he remained a spectator of this development until he appointed himself its referee.

As a critic of the formal approach, he sent blasts of sarcasm in letters to Heisenberg and

Kronig, then at Copenhagen, against the methods of Born, Heisenberg and Jordan.56 On

reading these, Heisenberg, for the first time irritated by Pauli, wrote to him in the middle



of October 1925: ’Your eternal reviling of Copenhagen and Göttingen is a flagrant scan-

dal. You will have to allow that, in any case, we are not seeking to ruin physics out of

malicious intent. When you reproach us that we are such big donkeys that we have never

produced anything new physically, it may well be true. But then, you are also an equally

big jackass because you have not accomplished it either.61

These words probably touched Pauli deep enough. He took up the problem of the

hydrogen atom and solved it within the next few weeks by means of matrix methods,

employing all the formal mathematical learning against which he had complained earlier.

He made an ingenious application of the integration method which Wilhelm Lenz had

used earlier for determining the effect of crossed electric and magnetic fields on the energy

states of the hydrogen atom in the Bohr-Sommerfeld theory.62 With the help of the ’Lenz

vector’ Pauli obtained the Balmer formula and showed how the situation with respect to

the forbidden orbits could now be understood naturally.63 It was exactly two years since

Pauli had first seriously doubted Bohr’s theory of the hydrogen atom, and now one had

come round a full circle. This was indeed a triumphant moment for the new quantum

mechanics, and Niels Bohr celebrated it by writing another letter to Rutherford, informing

him that the reasons for his misery in the previous spring had now disappeared.64

10. Non-Commutation and the Poisson Bracket : Dirac’s

Discovery

Just before Born, Heisenberg, Jordan paper was published in the Zeitschrift für Physik

in January 1926, another paper, containing the complete scheme of quantum mechanics,

made its appearance in the Proceedings of the Royal Society.65

Let us go back to the moment in July 1925 when Heisenberg gave his paper on

quantum-theoretical kinematics to Max Born. Immediately after depositing his paper

with Born, Heisenberg left for Leyden and Cambridge.

In Leyden he stayed and discussed physical problems with Paul Ehrenfest. Ehrenfest

was perceptive man, more inquiring and critical in his attitude to physics than creative.

In his first encounter with Pauli, Ehrenfest had declared : ’Herr Pauli, I happen to like

your papers better than I like you’, to which Pauli responded: ’Strange ; with me, regard-

ing you, it is just the opposite.’ Ehrenfest cared greatly for the progress of his research

students who, at that time, included Uhlenbeck and Goudsmit. Heisenberg discussed all

about spectroscopic problems with them. Earlier that spring he had completed another

paper on the anomalous Zeeman effect66, and Uhlenbeck and Goudsmit were very excited



as to what Pauli’s exclusion principle and the assignation of a new magnetic quantum

number to the electron, in addition to Heisenberg’s work on the anomalous Zeeman ef-

fect, meant for the organization of spectroscopic terms. They would soon postulate the

hypothesis of electron spin67, thereby giving meaning to the half quantum numbers which

had first made their appearance in Heisenberg’s work on the anomalous Zeeman effect.

The spin also explained what Pauli had called the ‘two-valuedness of the electron’ not

describable classically.68

From Leyden Heisenberg went to Cambridge, where he stayed with R.H. Fowler with

whom he had become acquainted in Copenhagen. On 28 July 1925, Heisenberg addressed

the Kapitza Club, the membership of which was limited to the students and friends of

peter Kapitza. The subject of his talk was ‘Term Zoology and Zeeman Botany’, dealing

with the enormous difficulties of masterminding the details of atomic spectroscopy with

the help of ad hoc rules.69 It is remarkable that Heisenberg chose to speak on this subject,

even though he seems to have found the solution of the quantum riddle recently. He was

apparently not certain that the solution was really in hand, However, he did talk privately

to Fowler about his new scheme.

Paul Dirac, then a research student of Fowler’s in Cambridge, probably attended

Heisenberg’s seminar, and he himself gave a talk at the Kapitza Club one week later.70

Fowler received the proof-sheets of Heisenberg’s paper53 at the beginning of September

1925, found it interesting, but was a bit uncertain about it and wanted to know what

Dirac’s reaction would be. Dirac has said : ‘ I was so impressed then with the Hamiltonian

formalism as the basis of atomic physics, that I thought there was not much in it [i.e.in

Heisenberg’s paper] and I put it aside for a week or so.’71

When Dirac went back to it, it suddenly became clear to him that Heisenberg’s idea

had provided the key to the ’whole mystery’. During the following weeks Dirac tried to

connect Heisenberg’s quantum-theoretical re-interpretation of kinematical quantities with

the action-angle variables of the Hamilton-Jacobi theory. ‘I worked on it intensively from

September 1925,’ Dirac said. ‘During a long walk on a Sunday it occurred to me that the

commutator might be the analogue of the Poisson bracket, but I did not know very well

then what a Poisson bracket, was. I had just read a bit about it, and forgotten most of

what I had read. I wanted t check up on this idea, but I could not do so because I did not

have any book at home which gave Poisson brackets, and all the libraries were closed. So

I had just to wait impatiently until Monday morning when the libraries were open and

check on what Poisson bracket really was. Then I found that they would fit, but I had

one impatient night of waiting.’72



From the very beginning Dirac’s clarification of the relationship between Heisenberg’s

variables and the classical variables made the formulation look more classical, and at the

same time it very cleanly isolated the small point at which the reformulation had to make

a break with the classical theory.

From the quantum conditions expressed in angular variables Dirac found the corre-

spondence between Heisenberg’s commutation brackets and the classical poisson brackets

for the variable X and Y ,

XY − Y X = ih
∑
r

{∂X
∂qr

∂Y

∂pr
− ∂Y

∂qr

∂X

∂pr

}
(33)

where qr and pr can be regarded as the action-angle variables (wr and Jr).

Dirac was now safely back on Hamiltonian ground. He showed his new results to Fowler

who fully appreciated their importance. Fowler knew what was going on in Copenhagen

and Göttingen, and he realized that there would be competition form these places.

He thought that the results obtained in England in this field had to be published at

once, and urged the Proceedings of the Royal Society to give immediate priority to the

publication of Dirac’s paper on ‘The Fundamental Equations of Quantum Mechanics.’65

Sir James Jeans,who was then editor of the proceedings and Secretary of the Royal So-

ciety, was ready and willing to oblige. All of Dirac’s papers from 1925 to 1933 were thus

published very fast.

In his fundamental paper65 Dirac first gave a summary of Heisenberg’s ideas, sim-

plifying the mathematics and making it at once more elegant. He anticipated all the

essential results of the papers of Born and Jordan58 and Born, Heisenberg and Jordan59.

He developed a quantum algebra, derived Heisenberg’s quantization rules, and obtained

the canonical equations of motion for quantum systems. In the same paper, Dirac intro-

duced an early form of creation and annihilation operators, pointing out their analogues

in classical theory.

Dirac quickly followed this paper by another a few weeks later.73 In it he developed

the algebra of q-numbers, that is, the dynamical variables which satisfy all the rules of

normal numbers except their product is not necessarily commutative. He gave detailed

theorems on the operations with q-numbers, and applied the rules he had obtained to

multiply-periodic systems in close analogy with the old quantum rules.



Dirac’s aim was to apply his scheme to the hydrogen atom. He wrote its Hamiltonian

by simply replacing position and momentum variables in the classical Hamiltonian by q-

numbers, and proceeded to obtain the Balmer formula in order to show that this abstract

scheme could give results closely related to the experiments. Dirac, however, did not go

into the details of this calculation as Pauli63 (in his paper published during the same

month, March 1926) had already shown that this could be done, and Dirac mentioned

it in a footnote.74 He then went on to calculate the various features of the splitting and

intensities of spectral lines in a magnetic field (including Zeeman effect) in agreement

with the experiments.

With all this work on the principles of quantum mechanics Dirac was awarded the

Ph.D. degree in May 1926 at Cambridge.75

With the concept of spin now available, and acceptable even to Pauli who had resisted

it for long, Heisenberg and Jordan, in spring 1926, solved the problem of the anomalous

Zeeman effect in the matrix scheme of quantum mechanics.76 There was al least a sym-

bolic satisfaction in doing so, for Heisenberg had taken his first unsure steps in quantum

theory by working on the problem of the anomalous Zeeman effect, and now it seemed all

right to show that one could cover the same steps by running.

This sequence of events relates only to a part of the birth of quantum mechanics,

for it was a twin birth. It would, however, be inappropriate for me to embark on the

development of wave mechanics this afternoon. Yet the occasion calls for a summary of

the events in order to conclude our story. Besides, Schrodinger’s wave mechanics and

ideas related to it completed the formulation of the rational theory of atomic phenomena

which began with Heisenberg’s discovery of a quantum kinematics.

11. Quantization As An Eigenvalue Problem

Since 1921 Erwin Schrödinger had been at the University or Zurich, where he occupied the

chair of theoretical physics which Einstein had once, albeit briefly, warmed77. Schrodinger

was a Viennese and a man of vast personal culture that included the study of Greek litera-

ture and philosophy in the original and the writing of poetry. A distinguished physicist by

any measure, Schrodinger traced has scientific lineage to Boltzmann through his teacher

Fritz Hasenöhrl, but he had himself not yet set the world aglow although he had done

excellent work on problems of Brownian motion, specific heat and quantum statistics, and

of general relativity. By summer 1925 Schrodinger had become tired of his stay in Zurich

because, as he wrote to Sommerfeld, ‘die Schweizer sind gar zu ungemutlich’ [‘the Swiss



are just too uncongenial’] and he wanted to go back home to Austria.78 He was negoti-

ating for the chair at Innsbruck, but since the university of Innsbruck sought to dicker

about the salary he let the matter, rather the chair, drop in favour of Arthur March.

Within eighteen months Schrodinger would be appointed as Max Planck’s successor at

the University of Berlin.

In the fall of 1925 Schrödinger suffered not only from the lack of congeniality of his col-

leagues in Zurich, but the work of Heisenberg and of Born and Jordan on matrix mechanics

added to his discomfort, for he remarked ;’.... I was discouraged (”abgeschreckt”), if not

repelled (”abgestossen”). by what appeared to me a rather difficult method of transcen-

dental algebra, defying any visualization (”Anschaulichkeit”)’.79 He decided to sublimate

his social and scientific unhappiness by conceiving and delivering a scheme of atomic me-

chanics which not only seemed to be a genuine alternative to the matrix or q-number

mechanics of Heisenberg, Born, Jordan, and Dirac, but helped in completing the edifice

of quantum mechanics and in inaugurating the discussions that led to its physical and

philosophical interpretation.

In four communications to the Annalen der Physik, submitted from the end of Jan-

uary to end of June 1926, Schrödinger developed his theory of wave mechanics, entitled

’Quantization as an Eigenvalue Problem’. Without any ado he presented his fundamental

equation,

H(q,
h

2πi

∂

∂q
)ψ(q) = ψ(q) = Eψ(q) (34)

and solved the problem of the spectrum of the hydrogen atom. 80 In the mathematical as-

pects of some of his work he had invaluable help from Hermann Weyl, then also in Zurich

at the E.T.H., and Schrodinger acknowledged it.81 Weyl’s 1908 thesis82 under Hilbert had

dealt with integral equations, eigenvalue problems, orthogonal functions, etc., and it was

a fortuitous combination of circumstances that brought Schrodinger and Weyl together.

Weyl had been invited in 1917 to become Felix Klein’s successor in Göttingen, but he had

refused ; in 1930 he would not be able to refuse the call to become Hilbert’s successor in

Göttingen and leave Zurich and the E.T.H. which, in parting, he called ’Wartesaal erster

Klasse’ [a first class waiting room]. In the altered political circumstances of 1933 the

distinguished intellectual stations of Continental Europe would be emptied in favour of

Cambridge, Dublin, Princeton and a hundred other more modest distant waiting rooms

of scholarship. But in 1926 it was good to be in Zurich and witness the rapid development

of wave mechanics.

In his communications Schrodinger prövided the basis of treating all those problems



of atomic physics that had been impossible to handle in the Bohr-Sommerfeld theory. In

Schrödinger’s work the fundamental ideas of Einstein and Louis de Broglie83 found a nat-

ural place. Schrödinger soon recognized that in spite of fundamental disparities the two

approaches, his own and Heisenberg and Born’s, did not clash nut rather complemented

each other. In fact, in the early spring of 1926, prior to the publication of his third com-

munication, Schrödinger discovered what he called ’a formal, mathematical identity’ of

wave mechanics and matrix mechanics.84 The same formal equivalence was demonstrated,

independently, by Carl Eckart85 in the United States and by Pauli86 in a letter to Jordan.

Now Heisenberg had believed throughout that the solution of the problems of atomic

mechanics would lead to one, unique, general mathematical scheme, and when he discov-

ered his scheme, well, that was it. With the arrival of Schrödinger’s theory, Heisenberg

was unhappy, and he believed, indeed hoped, that it was wrong.87 When in June 1926

Born 88 applied the Schrödinger method to treat collision problems, a work which led to

the statistical interpretation of Schrödinger’s wave function, Heisenberg reproached him

for going over ’to the enemy camp’.89 And to Pauli, he wrote : ‘The more I ponder about

the physical part of Schrödinger’s theory, the more disgusting [”desto abscheulicher”] it

appears to me.′90 This was, of course, not a matter of just wishing things away. Heisen-

berg genuinely believed that Schrodinger’s claim, that the absolute square of the wave

function, |ψ|2, described the charge distribution of the electron in space, was absolutely

wrong. Still, Heisenberg did not feel particularly unhappy when, during June and July

1926, he successfully applied Schrödinger’s theory to treat the helium problem.91

On 23 July 1926 Schrödinger’s gave a lecture in Munich on ’The Fundamental Ideas of a

Wave-Theoretical Atomic Physics’92, in which he presented his views in detail. Heisenberg,

who attended this lecture, discussed many questions with Schrödinger and frankly told

him that, on the basis of his interpretation, he (Schrödinger) would not be able to derive

even Planck’s law; whereupon Willy Wien, who was also present, told Heisenberg sharply

that while ’he understood my regrets that quantum jumps mechanics was finished, and

with it all such nonsense as quantum jumps, etc., the difficulties I had mentioned would

undoubtedly be solved by Schrödinger in the very near future.′93

12. Uncertainty and Complementarity

With Born’s statistical interpretation88 of the wave function in hand in July 1926, serious

and prolonged discussions began about the fundamental physical meaning of quantum

mechanics as represented by the two schemes. Their equivalence was established rigor-

ously by the transformation theory of Dirac94, Jordan95 and Fritz London96 by late fall



1926, and the question of physical interpretation became paramount. Bohr, Heisenberg,

Pauli and Schrodinger, primarily, took part in these discussions.

The problem of the interpretation of quantum theory had occupied Niels Bohr in-

creasingly since 1923 when the question of the nature of radiation became crucial for the

understanding of the Compton effect. For Heisenberg, who had eagerly pressed forward

by abandoning the use of classical concepts such as electron orbits in atoms, the problem

of the interpretation arose late in 1925 when he thought about the simultaneous existence

of the discrete energy spectrum of electrons moving along well-defined paths. It now oc-

curred to him that, in some sense which was not yet clear, a space-time description should

also be possible for the electrons in atoms.

In the fall of 1926 Heisenberg returned to the question of the space-time description

of electron’s behaviour in the atom. Pauli pointed out to him that Schrödinger’s wave

function could be considered in momentum space, as ψ(p), just as well as in coordinate

space, as ψ(q), to which Heisenberg responded : ’The fundamental equivalence of p and q

pleases me very much . Thus, in the wave-formulation, the equation pq− qp = h
2πi

always

corresponds to the fact that it makes no sense to speak of a monochromatic wave at a

definite moment (or in a very small time-interval).’97 At this place, in the margin of the

letter, Pauli noted: ’It also makes no sense to speak of a state(energy) in a time-interval

which is small compared to the period [because the state or the energy can be defined

only over the entire period].’ Heisenberg continued :’ If the [spectral] line may be taken

as being not too sharp, i.e. the time-interval is not too small, that of course makes sense.

Analogously, there is no point in talking about the position of a particle of a definite

velocity. However, it makes sense if one does not consider the velocity and the position

too accurately. It is quite clear that, macroscopically, it is meaningful to talk about the

position and velocity of a body.’97

Thus far, Heisenberg had only vaguely formulated his ideas about a ’coarse’ space-time

description, reflecting his new understanding based upon wave mechanics. In fall 1926

Heisenberg was in Copenhagen, where he had taken up his new duties as a lecturer as the

successor of Kramers who had been appointed to a professorship in Utrecht. Bohr, with

whom he discussed daily, had been developing his own approach to the problem of the

interpretation by emphasizing the duality of the wave and particle pictures in quantum

theory. Heisenberg preferred to abide by the quantum mechanical scheme, as formu-

lated by Born, Heisenberg, and Jordan, and by Dirac ; he believed that the wave features

should be brought in only by means of the transformation theory which Dirac94 had

worked out in Copenhagen in fall 1926.



Dirac had shown conclusively that the matrix S, employed in solving the problem

of the principal axis transformation in the case of a Hermitian Hamiltonian function

H(p, q), could be identified with Schrodinger’s wave function. In other words, for each

column vector, there exists the identity

Sq,E = ψE(q), (35)

where E is the discrete or continuous eigenvalue of the energy matrix. In order to handle

the problem of continuous indices Dirac introduced the delta-function, δ, as

1(α′ α′′) = δ(α′ − α′′), (36)

having the property that ∫
d α′′δ(α′ − α′′)f(α′′) = f(α′), (37)

and its derivative, δ′(α′ − α′′), defined as∫
d α′′δ′(α′ − α′′)f(α′′) =

∂f(α′)

∂α′
(38)

The momentum p, conjugate to a continuous position variable q, could then be written

formally as

p(q′, q′′) =
h

2πi
δ′(q′ − q′′) =

h

2πi

∂

∂q′
(39)

and the Born-Jordan matrix equation for diagonalizing the Hamiltonian H,

H(q, p)SE(q) = E.SE(q) (40)

could thus be transformed into Schrödinger’s wave equation,

H(q,
h

2πi

∂

∂q
)ψE(q) = EψE(q) (41)

The discussions, sometimes stormy, between Bohr and Heisenberg about the physical in-

terpretation of quantum mechanics continued during the winter months of 1926 − 27.

About mid February 1927 Bohr left for a skiing vacation in Norway, while Heisenberg

stayed on in Copenhagen. He made an effort to bring some order into his thoughts and

results of the past few months, and on 23 February 1927 he wrote a long letter to Pauli in

which he dealt with the problem of observing simultaneously the position and momentum

of atomic systems. He stated that the ’commutation relation’, pq − qp = h
2πi

, has the fol-

lowing physical interpretation : Given the exact momentum p of an electron in an atom,

its position is then completely undetermined, and vice versa.98 To support this point of



view, and to render it more visual, Heisenberg briefly discussed the Gedankenexperiment

for the observation of an electron by means of a γ−ray microscope, an analogy which oc-

curred to him from his doctoral oral examination under Wien several years before. Then

he turned to the exact calculation of the accuracy involved in the observation of p and q.

The probability amplitude of the position of an object, which lies within the space-

interval q0 − q1 < q < q0 + q1 is given by

S(q) = const. exp
[−(q − q0)2

2q21
− 2π i p0(q − q0)

h

]
(42)

where the first term represents a Gaussian distribution and the second, the general wave

function. From S(q), he determined S(p) with the help of the transformation equation,

S(p) =

∫
dq S(q)e2π i pq/h = const. exp

[
− 2π2q21(p− p0)2

h2
+

2πi

h
(p− p0)q0

]
(43)

Hence, for a given uncertainty δq = q1 in the position, the probability distribution, |S(p)|2,
of the momentum p is non-zero in the region p0 − p1 < p < p0 + p1, such that

4π2q21p
2
1

h2
≈ 1 (44)

The simultaneous measurement of the position and momentum of an electron is thus

limited by the Uncertainty Relation,

δp.δq ≈ h

2π
(45)

Heisenberg asked Pauli for his severe criticism [’unnachsichtige Kritik].98 However, Pauli

at one approved Heisenberg’s ideas on the uncertainty principle, and thought that this

interpretation endowed quantum mechanics with a coherent physical meaning. On return-

ing from his vacation in Norway Bohr was not immediately satisfied with Heisenberg’s

formulation of the ’intuitive’ content of the quantum-theoretical kinematics and mechan-

ics’, but Heisenberg was not willing to make any changes in his paper.99 However, in a

postscript added in proof, he incorporated Bohr’s suggestions.100

In his Special Relativity (1905), Einstein101 had emphasized the fundamental impor-

tance of employing ‘observable magnitudes’ only in the construction of a physical the-

ory. This conception of Einstein’s had guided Heisenberg in his discovery of a quantum-

theoretical kinematics.53 But when in spring 1926 Heisenberg met Einstein in Berlin, the

latter had told him : ’...it may be heuristically useful to keep in mind what one has actu-

ally observed. But on principle, it is quite wrong to try founding a theory on observable

magnitudes alone. In reality the very opposite happens. It is the theory which decides



what we can observe.’102 Heisenberg had employed this turnabout of Einstein’s original

conception in the derivation of the physical interpretation from the mathematical formal-

ism of quantum mechanics. This interpretation, embodied in the uncertainty principle,

Eq. (45), could be generalized to any pair of conjugate dynamical variables, and was soon

accepted as ’the real core of the new theory’.103

After his discussions with Schrodinger in Copenhagen in September 1926, during which

the question of ’quantum jumps’ often came up, Bohr reflected deeply upon the meaning

of the fundamental equations of quantum theory. His goal was to construct a general

philosophical guideline for the physical interpretation, independent of the mathematics

used. Bohr came to the conclusion that the situation in atomic physics could only be de-

scribed in terms of dual, complementary pictures which, in classical physics, exclude each

other. The uncertainty relations ensure that no contradiction will arise in the exercise of

the Principle of Complementarity in nature ; they exclude the possibility of situations oc-

curring that exhibit both the wave and particle aspects of a phenomenon simultaneously.

In his address to the International Congress of Physics in Como in September 1927, on

the occasion of the centenary of Alessandro Volta’s death, Niels Bohr presented his views

on complementarity.104

At the fifth Solvay Conference in Brussels, from 24 to 29 October 1927, quantum me-

chanics, together with the ’Copenhagen interpretation’, was publicly presented as a com-

plete and final theory of atomic phenomena by its numerous protagonists whose leader

was Niels Bohr. Einstein expressed some of his reservations about the new theory, thereby

beginning a discussion with Bohr about deterministic description versus statistical causal-

ity. During one of the lectures at the Solvay Conference, Paul Ehrenfest passed on a note

to Einstein, saying ’Don’t laugh ; There is a special section in purgatory for professors of

quantum theory, where they will be obliged to listen to lectures on classical physics ten

hours every day.’ To which Einstein replied, ’I laugh only at their naivete. Who knows

who would have the laugh in a few years?’105

The Einstein-Bohr discussions, on the question whether the quantum mechanical de-

scription of physical reality is ’complete’, were continued at the sixth Solvay Conference

in October 1930. Since then the discussion on the interpretation and epistemology of

quantum mechanics has been joined in by a growing number of participants. However,

quantum theory, the Knaben-physik, the young man’s game, continues to grow through

its manifestations in all regions of physical experience.
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10. H. A. Kramers, Über den Einfluss eines elektrischen Feldes auf die Feinstruktur der

Wasserstofflinien, Z. Phys. 3 (1920), pp.199-223.



11. W. Heisenberg, Physics and Beyond, Harper and Row, New York Evanston- London

1971. p.7.

12. W. Heisenberg, Ref.11, p.35.

13. A. Sommerfeld and W. Heisenberg, Die Intensität der Mehrfachlinien und ihrer

Zeemankomponenten, Z. Phys. 11 (1922), pp. 131-154.
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Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elek-

trons Naturwiss. 13 (1925), pp. 953-954; Spinning Electrons and the Structures of

Spectra, Nture 117 (1926), pp. 264-265.
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