ME-02 Lessons in Physics[∗]

Summation Convention, ϵ , δ symbols and All That

A. K. Kapoor

<http://0space.org/users/kapoor>

[akkapoor@cmi.ac.in;](akkapoor@cmi.ac.in) akkhcu@gmail.com

Contents

You will learn about Einstein summation convention, Kronecker delta symbol and Levi-Civita epsilon symbol. Examples of usage of Kronecker delta and Levi-Civita symbols to vector algebra are presented.

 $§2$ Summation Convention $\qquad \qquad \uparrow \neg \$1-\$2-\$3-\Downarrow$

§2.1 Einstein Summation Convention

We describe the Einstein summation convention and give some examples.

1. Summation convention

If $\vec{x} = (x_1, x_2, x_3)$ is vector, square of its length is given by

$$
|\vec{x}|^2 = \sum_{i=1}^3 x_i^2.
$$

We can rewrite it as

$$
|\vec{x}|^2 = \sum_{i=1}^3 x_i x_i.
$$

[∗]mp-lsn-17001

In this form the index i is repeated and is summed over all values. The *Einstein* summation convention says all repeated indices are automatically summed over all possible values. With this convention we write

$$
|\vec{x}|^2 = x_i x_i.
$$

2. Dummy index

The index which is summed over all values is called a *dummy index*. A dummy index can be replaced with any other index taking the same set of values. Thus we can write $|\vec{x}|^2$ as $x_i x_i$, or as $x_j x_j$. Obviously the two expressions are equal.

3. Free index must balance

An index which appears only once in an expression is not summed, is called a free index. Every term of an equation (or an expression) the free indices must balance.

4. A relation having having a free index

If an index appears as a free index in an equation, it is understood, by convention, that the hold for all values of the free index. As an example, matrix multiplication of a column vector u by a matrix, $v = Au$, is normally written as

$$
v_i = \sum_{j=1}^{N} A_{ij} u_j, i = 1, \dots, N,
$$
\n(1)

With the above convention we will write it as

$$
v_i = A_{ij} u_j \tag{2}
$$

In the above equation is a free index. It is understood that the above equation holds for all values of the free index i.

§2.2 Kronecker Delta and Levi-Civita Symbols

[⇑](#page-0-2)

Convention In this write up we assume Einstein summation convention for repeated indices.

Definition 1 The Kronecker delta symbol δ_{ij} is defined as

$$
\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}
$$
 (3)

Definition 2 The Levi-Civita symbol ϵ_{ijk} (with three indices) is a completely anti-symmetric under exchange of any two indices. So for example

$$
\epsilon_{ijk} = -\epsilon_{jik}; \epsilon_{ijk} = -\epsilon_{ikj}; \epsilon_{kij} = -\epsilon_{kij}.
$$

Here the indices ijk take values from 1 to 3.

The symbol ϵ_{ijk} has only one independent component and we have $\epsilon_{123} = 1$. All other components are related to ϵ_{123} and turn out to be either zero or ± 1 .

The definition of the Levi-Civita is easily generalized to the case of any number of indices. So with N indices $i_1, i_2, ..., i_N$ all taking values $1, 2, ..., N$, we have the symbol $\epsilon_{i_1,i_2,...i_N}$ antisymmetric under exchange of any pair of two indices and $\epsilon_{123..N} = 1$.

)||(Short Examples 1 We explicitly list values of Kronecker delta and epsilon symbols when the indices run from 1 to 3.

- (1a) $\delta_{11} = \delta_{22} = \delta_{33} = 1$
- (1b) $\delta_{12} = \delta_{21} = \delta_{23} = \delta_{32} = \delta_{31} = \delta_{13} = 0$
- (1c) The six non-zero components of epsilon symbol are

```
\epsilon_{123} = \epsilon_{231} = \epsilon_{312} = 1\epsilon_{213} = \epsilon_{321} = \epsilon_{132} = -1
```
(1d) All other components of ϵ_{ijk} vanish when any two indices coincide. So, for example

$$
\epsilon_{111} = \epsilon_{222} = \epsilon_{333} = 0
$$

 $\epsilon_{112} = \epsilon_{122} = \epsilon_{133} = ... = 0$

A useful result If f_{ijk} is any object which is totally antisymmetric in its indices, then it must be proportional to the Levi-Civita symbol. Thus

$$
f_{ijk} = C\epsilon_{ijk}; \ and \ C = f_{123}
$$

Some identities We give some identities of Kronecker delta and the Levi-Civita symbols for the case when the indices take three values $1,2,3$.

$$
\delta_{ii} = 3; \qquad \epsilon_{ijk}\epsilon_{ijk} = 6 \tag{4}
$$

For the Levi-Civita symbol we have the following identities.

$$
\epsilon_{ijk}\,\epsilon_{l\,jk} = 2\,\delta_{il} \tag{5}
$$

$$
\epsilon_{ijk}\,\epsilon_{lm\,k} = (\delta_{il}\,\delta_{jm} - \delta_{im}\,\delta_{jl}) \tag{6}
$$

$$
\epsilon_{ijk} \epsilon_{lmn} = \begin{vmatrix} \delta_{il} & \delta_{im} & \delta_{in} \\ \delta_{jl} & \delta_{jm} & \delta_{jn} \\ \delta_{kl} & \delta_{km} & \delta_{kn} \end{vmatrix}
$$
 (7)

The determinant of a 3×3 matrix X has an expression in terms of Levi-Civita symbol.

$$
\det X = \frac{1}{3!} \epsilon_{ijk} \epsilon_{\ell mn} X_{i\ell} X_{jm} X_{kn}.
$$
 (8)

This result generalizes matrices having any dimension.

§2.3 Examples

Summation convention

 $||$ (Short Examples 2 Let S_{ij} and A_{ij} are respectively symmetric and anti-symmetric under exchange ij and T_{ij} be arbitrary second rank tensor. Then

(2a)
$$
S_{ij}T_{ij} = \frac{1}{2}S_{ij}(T_{ij} + T_{ji})
$$

\n(2b) $A_{ij}T_{ij} = \frac{1}{2}A_{ij}(T_{ij} - T_{ji})$
\n(2c) $S_{ij}A_{ij} = 0$.

Proof of (2a) Let S_{ij} be symmetric under exchange of indices $i \leftrightarrow j$ and T_{ij} be arbitrary tensor of rank 2. Thus we are given $S_{ij} = S_{ji}$. We will now show that

$$
S_{ij}T_{ij}=\frac{1}{2}\Big(S_{ij}\big(T_{ij}+T_{ji}\big)\Big).
$$

Let σ denote the left hand side, $\sigma = S_{ij}T_{ij}$ Consider

$$
\sigma = S_{ij} T_{ij} = S_{ji} T_{ij} \qquad \text{used given symmetry property of S} \tag{9}
$$

Now replace dummy indices i, j by a new set mn to get

$$
\sigma = S_{ji} T_{ij} = S_{nm} T_{mn} \qquad \text{replaced } i \to m, j \to n \tag{10}
$$

$$
= S_{ij}T_{ji} \qquad \text{replaced } m \to j, n \to i \tag{11}
$$

This implies that the $\frac{1}{2}(S_{ij}(T_{ij}+Tji))=\frac{\sigma}{2}+\frac{\sigma}{2}=\sigma$. which is the desired result. Proof of $(2b)$ is written along similar lines. For a proof of $(2c)$, use $(2a)$ or $(2b)$.

§2.4 Use of ϵ, δ symbols in vector algebra

The use of Kronecker delta and Levi-Civita epsilon symbols for vector algebra and vector calculus simplifies computations. Here we give a few elementary examples to illustrate usage of these symbols.

[1] The dot product of two vectors $\vec{A} \cdot \vec{B}$ can be written as

$$
\vec{A} \cdot \vec{B} = \delta_{jk} A_j B_k \tag{12}
$$

[2] The cross product of two vectors $\vec{C} = \vec{A} \times \vec{B}$ can be written as

$$
C_i = \epsilon_{ijk} A_j B_k \tag{13}
$$

[3] The triple product $[\vec{A}, \vec{B}, \vec{C}]$ can be represented as

$$
[\vec{A}, \vec{B}, \vec{C}] = \epsilon_{ijk} A_i B_j C_k \tag{14}
$$

[4] Using the above expression is is easy to see that the cross product of a vector with itself vanishes. This is seen as follows. Let $\vec{C} = \vec{A} \times \vec{A}$, then

$$
C_i = \epsilon_{ijk}(A_j A_k). \tag{15}
$$

Here ϵ_{ijk} is antisymmetric under exchange $j \leftrightarrow k$ whereas $A_j A_k$ is symmetric. Hence the sum over all jk vanishes.

[5] Vector algebra identities can be used to derive identities for the Kronecker delta and Levi-Civita epsilon symbols. For example

$$
(\vec{A} \times \vec{B}) \cdot (\vec{C} \times \vec{D}) = (\vec{A} \cdot \vec{C})(\vec{B} \cdot \vec{D}) - (\vec{B} \cdot \vec{C})(\vec{A} \cdot \vec{D})
$$

implies

$$
\epsilon_{ijk}\epsilon_{imn} = \delta_{jm}\delta_{kn} - \delta_{km}\delta_{jn}
$$

The proof of this result is left as an exercise for the reader.

§3 EndNotes [⇑](#page-0-2)–§[1–](#page-0-3)§[2–](#page-0-4)§[3–](#page-4-1)[⇓](#page-4-2)

1. Food for your thought

(a) Writing out all terms for a 2×2 matrix A, explicitly verify that

$$
\epsilon_{ij}\epsilon_{mn}A_{im}A_{jn} = 2 \det A.
$$

where the indices i, j, m, n take values 1 and 2.

(b) For a three by three matrix A show that

$$
\det A = \epsilon_{ijk} A_{i1} A_{j2} A_{k3}.
$$

- 2. The discussion of Kronecker δ and summation convention presented here is based on Woodhouse [\[1\]](#page-5-0) Examples 3.1-3.6.
- 3. For introduction to Kronecker delta and Levi Civita Symbol and applications to vector calculus and electromagnetic theory see, for example <https://arxiv.org/pdf/1406.3060.pdf>
- 4. 0space Link for Levi Civita tensor [On 0space.org ;](http://0space.org/node/3179) See also Kronecker Delta function δ_{ij} [and Levi-Civita \(Epsilon\) symbol](http://0space.org/node/3180) ϵ_{ijk}

References

[1] Woodhouse N. M. J. Introduction to Analytical Dynamics. Springer, London Limited, New edition, 2009.

