Lecture 8 Radiation from an Accelerated Charge

8.1 Electromagnetic potentials

We have seen (Lienard-Wiechert potentials) that the potentials ϕ and \mathbf{A} at a point \mathbf{r} and time t due to a charge q located at \mathbf{r}' very close to the origin (at the retarded time) are

$$\phi(\mathbf{r},t) = \frac{q}{4\pi\varepsilon_0} \frac{1}{r} \left(\frac{1}{1 - [\mathbf{v}] \cdot \mathbf{n}/c} \right)$$
 (50)

$$\mathbf{A}(\mathbf{r},t) = \frac{q}{4\pi\varepsilon_0 c^2} \frac{1}{r} \left(\frac{[\mathbf{v}]}{1 - [\mathbf{v}] \cdot \mathbf{n}/c} \right)$$
 (51)

where $r = |\mathbf{r} - \mathbf{r}'| \approx |\mathbf{r}|$,

 \mathbf{n} is the unit vector in the direction of \mathbf{r} , and

[v] is the velocity $\mathbf{v} = d\mathbf{r}'/dt'$ of the particle at the retarded time t' = t - r/c.

When the charged particle is moving with a velocity small compared to velocity of light, the term $[\mathbf{v}].\mathbf{n}/c$ can treated as a small quantity (compared to 1), and we can keep it only upto its first order in equations,

$$\phi(\mathbf{r},t) = \frac{q}{4\pi\varepsilon_0} \frac{1}{r} \left(1 + \frac{[\mathbf{v}] \cdot \mathbf{n}}{c} \right)$$
 (52)

$$\mathbf{A}(\mathbf{r},t) = \frac{q}{4\pi\varepsilon_0 c^2} \frac{[\mathbf{v}]}{r}$$
 (53)

In these expressions the dependence on time t comes indirectly through

$$[\mathbf{v}] = \mathbf{v}(t - r/c).$$

Also note that any function of the form

$$F(r,t) \equiv \frac{f(t-r/c)}{r}$$

automatically satisfies the wave equation,

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) F(r, t) = \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) F(r, t)$$

$$= 0.$$

Therefore both ϕ and \mathbf{A} in (52) and (53) satisfy the wave equation far away from the origin r = 0.

8.2 Electromagnetic fields

We now calculate electromagnetic fields given by the expressions

$$\mathbf{E} = -\nabla\phi - \frac{\partial\mathbf{A}}{\partial t} \tag{54}$$

$$\mathbf{B} = \nabla \times \mathbf{A}. \tag{55}$$

In order to get simpler formulas, we take the case of a charged particle moving only along the z-axis near the origin. Then $\mathbf{v} = (0, 0, v)$ and $\mathbf{v} \cdot \mathbf{n} = vz/r$.

$$\phi(\mathbf{r},t) = \frac{q}{4\pi\varepsilon_0} \frac{1}{r} + \frac{q}{4\pi\varepsilon_0} \frac{vz}{r^2c}$$
 (56)

$$\mathbf{A}(\mathbf{r},t) = \frac{q}{4\pi\varepsilon_0} \frac{1}{rc^2} (0,0,v), \tag{57}$$

where it is understood that v is a function of t - r/c.

Furthermore, as 1/r is small (we call the region where r is large as 'radiation zone') we drop all field terms which

are of order $O(1/r^2)$. The leading O(1/r) terms come only from differentiating the velocity v = v(t - r/c). We also omit the common factor $q/4\pi\varepsilon_0$ and only include it in the final expressions. The electric field has two terms

$$-\nabla \phi = O(1/r^2) + \frac{az}{r^3c^2}\mathbf{r}$$
$$-\frac{\partial \mathbf{A}}{\partial t} = \left(0, 0, -\frac{a}{rc^2}\right),$$

where a = dv/dt' is the acceleration of the charge at the retarded time. Similarly, we calculate the magnetic field $B = \nabla \times \mathbf{A}$. Thus the fields in the radiation zone (omitting $O(1/r^2)$ terms) are

$$\mathbf{E}_{\mathrm{rad}} = \frac{q}{4\pi\varepsilon_0} \frac{a}{rc^2} \left(\frac{xz}{r^2}, \frac{yz}{r^2}, \frac{z^2}{r^2} - 1 \right) \tag{58}$$

$$\mathbf{B}_{\mathrm{rad}} = \frac{q}{4\pi\varepsilon_0} \frac{a}{rc^3} \left(-\frac{y}{r}, \frac{x}{r}, 0 \right). \tag{59}$$

We notice that $\mathbf{E}_{\mathrm{rad}}$ and $\mathbf{B}_{\mathrm{rad}}$ are orthogonal, and perpendicular to the radial vector \mathbf{r} . In fact if we use the polar coordinates (r, θ, ϕ) then the $\mathbf{B}_{\mathrm{rad}}$ lines of force are circles of constant θ and r with increasing angle ϕ , whereas $\mathbf{E}_{\mathrm{rad}}$ lines are circles of constant ϕ and r but increasing θ .

The energy radiated in the radial direction $\mathbf{n} = \mathbf{r}/r$ is given by the Poynting vector

$$\mathbf{S}_{\text{rad}} = \varepsilon_0 c^2 \mathbf{E}_{\text{rad}} \times \mathbf{B}_{\text{rad}} = \left(\frac{q^2}{16\pi^2 \varepsilon_0}\right) \frac{a^2 \sin^2 \theta}{r^2 c^3} \mathbf{n}. \tag{60}$$

The total energy radiated per unit time is obtained by integrating this expression over the surface of a sphere. That integral is called J. J. Larmor's formula

$$S_{\text{tot}} = \frac{q^2 a^2}{6\pi\varepsilon_0 c^3} = \frac{q^2}{4\pi\varepsilon_0} \frac{2}{3} \frac{a^2}{c^3}.$$
 (61)