Lecture 7 Fields from a Point Charge

The potentials due to a **point charge** were calculated by Lienard (1898) and Wiechert (1900).

Recall (from lecture 3.2) that the potentials in the Lorentz gauge $(\nabla \cdot \mathbf{A} + \partial \phi / (c^2 \partial t))$ satisfy the wave equations,

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \phi(\mathbf{r}, t) = -\frac{\rho(\mathbf{r}, t)}{\epsilon_0}$$
(46)

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \mathbf{A}(\mathbf{r}, t) = -\frac{\mathbf{j}(\mathbf{r}, t)}{\epsilon_0 c^2}$$
(47)

The solutions of these using the Green's function for the wave equation are

$$\phi(\mathbf{r},t) = -\frac{1}{\epsilon_0} \int d^3 \mathbf{r}' \int dt' G(\mathbf{r}-\mathbf{r}',t-t')\rho(\mathbf{r}',t')$$
(48)
$$= \frac{1}{4\pi\epsilon_0} \int d^3 \mathbf{r}' \int dt' \frac{1}{|\mathbf{r}-\mathbf{r}'|} \delta(t-t'-|\mathbf{r}-\mathbf{r}'|/c)\rho(\mathbf{r}',t')$$

$$= \frac{1}{4\pi\epsilon_0} \int d^3 \mathbf{r}' \frac{1}{|\mathbf{r}-\mathbf{r}'|} \rho(\mathbf{r}',t-|\mathbf{r}-\mathbf{r}'|/c)$$

If the point particle with charge q moves along a trajectory so that at time t the position of the point particle is $\mathbf{s}(t)$ then the charge density is

$$\rho(\mathbf{r},t) = q\delta^3(\mathbf{r} - \mathbf{s}(t)). \tag{49}$$

The potential due to this charge is

$$\phi(\mathbf{r},t) = \frac{q}{4\pi\epsilon_0} \int d^3\mathbf{r}' \frac{1}{|\mathbf{r}-\mathbf{r}'|} \delta^3(\mathbf{r}'-\mathbf{s}(t-|\mathbf{r}-\mathbf{r}'|/c))$$

Eveluation of this integral requires some care because the argument of the Dirac delta functions (there are three of them) are not in the variables $\mathbf{r}' = (x^{1'}, x^{2'}, x^{3'})$ but more complicated functions :

$$\delta^3(\mathbf{r}' - \mathbf{s}(t - |\mathbf{r} - \mathbf{r}'|/c)) \equiv \delta^3(\mathbf{f})$$

where

$$\mathbf{f}(\mathbf{r}, \mathbf{r}', t) = \mathbf{r}' - \mathbf{s}(t - |\mathbf{r} - \mathbf{r}'|/c)$$

Actually \mathbf{r} and t are 'sitting' variables doing nothing as far as the integration is concerned. The real functional relationship is between \mathbf{r}' and \mathbf{f} . The integration can be changed to variables \mathbf{f} in place of \mathbf{r}'

$$d^{3}\mathbf{r}' = d^{3}\mathbf{f} \times \frac{1}{J}$$
$$J = \det \left\| \frac{\partial f^{i}}{\partial x'^{j}} \right\|$$

The Jacobian matrix can be easily calculated : for example

$$\frac{\partial f_i}{\partial x'^j} = \delta_j^i - \frac{ds^i}{dt} \frac{\partial}{\partial x'^j} \left(\frac{-|\mathbf{r} - \mathbf{r}'|}{c} \right)$$
$$= \delta_j^i - \frac{ds^i}{dt} \frac{x^j - x'^j}{c|\mathbf{r} - \mathbf{r}'|}$$
$$= \delta_j^i - \frac{v^i n^j}{c}$$

where $\mathbf{v} = d\mathbf{s}/dt$ is the velocity of the particle and $\mathbf{n} = (\mathbf{r} - \mathbf{r}')/|\mathbf{r} - \mathbf{r}'|$ is the unit vector pointing from \mathbf{r}' towards \mathbf{r} . You can check that the determinant of this matrix is

$$J = 1 - \mathbf{v} \cdot \mathbf{n}/c$$

Therefore,

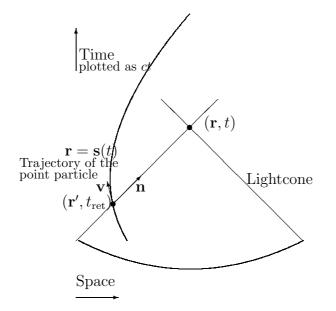
$$\begin{split} \phi(\mathbf{r},t) &= \frac{q}{4\pi\epsilon_0} \int d^3 \mathbf{r}' \frac{1}{|\mathbf{r} - \mathbf{r}'|} \delta^3(\mathbf{r}' - \mathbf{s}(t - |\mathbf{r} - \mathbf{r}'|/c)) \\ &= \frac{q}{4\pi\epsilon_0} \int d^3 \mathbf{f} \delta^3(\mathbf{f}) \frac{1}{J} \frac{1}{|\mathbf{r} - \mathbf{r}'(\mathbf{f})|} \\ &= \frac{q}{4\pi\epsilon_0} \left[\frac{1}{J} \frac{1}{|\mathbf{r} - \mathbf{r}'(\mathbf{f})|} \right]_{\mathbf{f} = \mathbf{0}} \\ &= \frac{q}{4\pi\epsilon_0} \times \frac{1}{1 - \mathbf{v}(t_{\text{ret}}) \cdot \mathbf{n}/c} \times \frac{1}{R}, \qquad R = |\mathbf{r} - \mathbf{s}(t_{\text{ret}})| \end{split}$$

Here the solution of

$$\mathbf{f} = \mathbf{r}' - \mathbf{s}(t - |\mathbf{r} - \mathbf{r}'|/c) = 0$$

for \mathbf{r}' for a fixed value of \mathbf{r} and t is obtained as follows : Start from the space-time point \mathbf{r}, t . Draw the past light cone from this point. Find the space-time point at which the trajectory of the particle $\mathbf{s}(t)$ intersects the past light cone. This point is precisely $\mathbf{r}', t_{\text{ret}}$. (See the diagram.) The value of \mathbf{r}' is the position of the charged point particle at t_{ret} . So $\mathbf{r} - \mathbf{r}'$ should be replaced by $\mathbf{r} - \mathbf{s}(t_{\text{ret}})$ when integration over $\delta^3(\mathbf{f})$ is performed.

39



You should appreciate the elegance and convenience of the Dirac delta function in getting the Lienard-Wiechert potential by comparing to the original proof which was given in 1900 and is summarized in the book *History of theories of Aether and Electricity* by E. T. Whittaker.