
Lecture 6
Fields for Arbitrary Charge and Current

Densities

6.1 The wave equations

The Maxwell equations imply wave equations for electric and
magnetic fields. Taking ‘curl’ ∇× (∇ × E) of the Faraday’s
law of induction gives

∇(∇ · E)−∇2E = ∇× (∇× E) = − ∂

∂t
(∇×B)

where we have interchanges the time and space derivative on
the right hand side. Substituting for ∇ · E and ∇× B from
the other Maxwell equations we get

(

∇2 − 1

c2
∂2

∂t2

)

E =
1

ǫ0
∇ρ+ 1

ǫ0c2
∂j

∂t
(36)

Similarly taking ‘curl’ of ∇×B we can get
(

∇2 − 1

c2
∂2

∂t2

)

B = − 1

ǫ0c2
∇× j (37)

These are inhomogeneous wave equations whose particular
solution are known to us through the Green’s function. The
solution of

(

∇2 − 1

c2
∂2

∂t2

)

φ(r, t) = ψ(r, t) (38)

is

φ(r, t) =
∫

d3r′
∫

dt′G(r− r′, t− t′)ψ(r′, t′) (39)
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= −
∫

d3r′
∫

dt′
1

4πR
δ(t− t′ − R/c)ψ(r′, t′)

= −
∫

d3r′
1

4πR
ψ(r′, t− R/c)

(40)

where we have substituted the Green’s function for the wave
equation given by the expression

G(r− r′, t− t′) = − 1

4πR
δ(t− t′ − R/c), R = |r− r′|.(41)

as calculated in lecture 3.4.

Our equations (1) and (2) are of the same from as (3)
but they also involve derivatives. And handling derivatives
requires a little care for the following reason :

The right hand side is an integral over whatever the func-
tion ψ is evaluated with t replaced by t − |r − r′|/c. The
function ψ(r′, t′) which was a function of one vector variable
r′ and one scalar t′ respectively has become a function of r′, r
and t. If we had ∂ψ(r′, t′)/∂x′, for example, on the right hand
side in place of ψ then

∂ψ(r′, t′)

∂x′

∣

∣

∣

∣

∣

t′=t−R/c

(42)

would be the quantity inside the integral sign. Which is, bye
the way, not the same thing as

∂ψ(r′, t− R/c)

∂x′
(43)

because of the additional dependence on r′ through R. An-
other way to say this is that while ∂/∂x′ in (7) means differen-
tiating with respect to x′ keeping t′ constant, in (8) it means
differentiating with respect to x′ keeping t and r constant.

34



You can ask why we should be bothered to use (8) when (7)
is already the correct expression? The answer is that we would
like to use one quantity ψ(r′, t−R/c) and its derivatives rather
than two quantities ψ(r′, t− R/c) and [∇′ψ(r′, t′)]t′=t−R/c.

The two are related of course.

∂ψ(r′, t−R/c)

∂x′
=
∂ψ(r′, t′)

∂x′

∣

∣

∣

∣

∣

t′=t−R/c

+
∂ψ(r′, t′)

∂t′

∣

∣

∣

∣

∣

t′=t−R/c

∂

∂x′

(−R
c

)

Similarly, if we had a time derivative ∂ψ(r′, t′)/∂t′, then

∂ψ(r′, t′)

∂t′

∣

∣

∣

∣

∣

t′=t−R/c

which occurs inside the integral over d3r′ is related to the
derivative w.r.t. t more simply by

∂ψ(r′, t− R/c)

∂t
=
∂ψ(r′, t′)

∂t′

∣

∣

∣

∣

∣

t′=t−R/c

After this explanation we can proceed to write our solu-
tions.

6.2 Jefimenko’s expressions for E and B

For the electric field the right hand side involves ∇′ρ(r′, t′)
and ∂j(r′, t′)/∂t′ both evaluated at t′ = t−R/c. Using

∇′ρ(r′, t− R/c) = ∇′ρ(r′, t′)|t′=t−R/c +
∂ρ(r′, t′)

∂t′

∣

∣

∣

∣

∣

t′=t−R/c

∇′

(−R
c

)
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and

∇′R = ∇′|r− r′| = −R

R
≡ − r− r′

|r− r′|

and an integration by part

∫

∞

−∞

dx′
∫

∞

−∞

dx′
∫

∞

−∞

dx′
∇′f(r′)

R
= −

∫

∞

−∞

dx′
∫

∞

−∞

dy′
∫

∞

−∞

dz′ ∇′

(

1

R

)

f(r′)

we get (do the algebra!)

E(r, t) =
1

4πǫ0

∫

d3r′
[R

R3
ρ(r′, t−R/c) +

R

cR2

∂ρ(r′, t− R/c)

∂t

− 1

c2R

∂j(r′, t− R/c)

∂t

]

(44)

Similarly, the magnetic induction field is obtained as

B(r, t) = − 1

4πǫ0c2

∫

d3r′
[R

R3
× j(r′, t− R/c) +

R

cR2
× ∂j(r′, t− R/c)

∂t
]

(45)

These expressions for E and B are called Jefimenko’s equa-
tions.
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