Lecture 6
Fields for Arbitrary Charge and Current
Densities

6.1 The wave equations

The Maxwell equations imply wave equations for electric and
magnetic fields. Taking ‘curl’ V x (V x E) of the Faraday’s
law of induction gives
0
V(V-E)—-V’E =V x (VXE):—E(VXB)

where we have interchanges the time and space derivative on
the right hand side. Substituting for V - E and V x B from
the other Maxwell equations we get
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Similarly taking ‘curl’ of V x B we can get
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These are inhomogeneous wave equations whose particular
solution are known to us through the Green’s function. The
solution of

, 1& -
(¥~ g ) o001 = vt (59

o(r,t) = /ﬁﬂ/ﬁ@@—ﬂJ—ﬂwqu (39)

33



1
= = [d [dr it =t — R/ )

3./ 1 !
= —/drmw(r,t—R/C)
(40)

where we have substituted the Green’s function for the wave
equation given by the expression

Gir—r't—1t)= (t—t' — R/c), R=|r—1r|.(41)

1
——
47 R
as calculated in lecture 3.4.

Our equations (1) and (2) are of the same from as (3)
but they also involve derivatives. And handling derivatives
requires a little care for the following reason :

The right hand side is an integral over whatever the func-
tion ¢ is evaluated with ¢ replaced by ¢ — |[r — r’|/c. The
function ¢ (r’,#') which was a function of one vector variable
r’ and one scalar t' respectively has become a function of r’; r
and t. If we had 0y (r',t")/0x’, for example, on the right hand
side in place of v then

oY(r' 1)

B (42)
oz’ t'=t—R/c

would be the quantity inside the integral sign. Which is, bye
the way, not the same thing as

81/1@',7 t— R/C)
ox!

(43)

because of the additional dependence on r’ through R. An-
other way to say this is that while 9/0x" in (7) means differen-
tiating with respect to z’ keeping ¢’ constant, in (8) it means
differentiating with respect to 2’ keeping ¢t and r constant.
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You can ask why we should be bothered to use (8) when (7)
is already the correct expression? The answer is that we would
like to use one quantity ¥ (r’, t—R/c) and its derivatives rather
than two quantities (x',t — R/c) and [V'O(r', t')]y=1—rye.

The two are related of course.
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Similarly, if we had a time derivative 0y (r',t")/Ot', then
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which occurs inside the integral over d°r’ is related to the
derivative w.r.t. ¢ more simply by
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After this explanation we can proceed to write our solu-
tions.

6.2 Jefimenko’s expressions for E and B

For the electric field the right hand side involves V'p(r’,t)
and 0j(r',t")/0t’ both evaluated at ¢’ =t — R/c. Using

Ip(r',¥')

V/p(r/, t— R/C> = V’p(r/, t/)‘t/:tfR/c + ot

t'=t—R/c
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and
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and an integration by part
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we get (do the algebra!)
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Similarly, the magnetic induction field is obtained as
_ 1 3./ R sl R 8j<r/7t_R/c)
B(r,t) = _47r6002/dr[ﬁ XJ(r,t—R/c)+CR2 X 5 ]

(45)

These expressions for E and B are called Jefimenko’s equa-
tions.
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