
Lecture 5
Fields for Arbitrary Charge and Current

Densities

5.1 Green’s function for the Helmholtz equa-

tion

The equation to be solved is

(∇2 + κ2)G(r) = δ(r),

where κ is a positive real number. As in the case of Poisson
equation we assume

G(r) =
1

(2π)3

∫

d3k G̃(k) eik.r

and obtain

G̃(k) = − 1

k2 − κ2
, k = |k|.

In the Poisson case, G̃(k) = −1/k2 gave a problem at k2 =
0 and we redefined the integral for G(r) by changing k2 to
k2 + µ2 with µ → 0. Here, that trick will not do because the
singularity cannot be removed that way. (Figure out why?)

In the present case we avoid the singularity at k = ±κ by
making κ complex by adding an infinitesimal imaginary part.
We can do this in two ways, adding a positive or a negative
imaginary part. Both ways are equally valid and give two
independent Green’s functions.

G̃±(k) = lim
ǫ→0

− 1

k2 − κ2ǫ
, κǫ = κ± iǫ.

30



The remaining calculation is exactly as that for the Poisson
case, (do that), thus

G±(r) = −e
±iκr

4πr
.

5.2 Green’s function for the Wave equation

The fundamental equation for the wave equation is
(

∇2 − 1

c2
∂2

∂t2

)

G(r, t) = δ(t)δ(r).

Traditionally we do it in two steps. First, we define the time-
Fourier transform of G

G(r, t) =
1

2π

∫

∞

−∞

dω Ĝ(r, ω)eiωt

which shows that the intermediate transform Ĝ satisfies the
Helmholtz equation

(∇2 + κ2)Ĝ(r, ω) = δ(r), κ = ω/c

because on the right hand side δ(t) can be written as Fourier
transform

δ(t) =
1

2π

∫

∞

−∞

dω eiωt,

and comparing. So, using the solution for the Helmholtz equa-
tion, we write

Ĝ±(r, ω) = −e
±iωr/c

4πr
.

Next, this value of Ĝ can be substituted to calculate the
Green’s function

G±(r, t) = − 1

4πr

1

2π

∫

∞

−∞

dω eiω(t±r/c)

= − 1

4πr
δ
(

t± r

c

)

.
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The two solutions; one with δ(t − r/c) is called the retarded

and the one with δ(t + r/c) is called the advanced solution.
The reason for these names will appear in the next sections.
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