Show that the principal moments of inertia of a linear chain consisting of two kinds of atoms a, b, with origin chosen to coincide with the centre of mass, is given by

$$I_1 = I_2 = \frac{1}{M} \sum_{i \neq j} m_i m_j d_{ij}^2, \qquad I_3 = 0.$$

where the summation includes each pair of i, j atoms once and d_{ij} is the distance between atoms in the pair and M is the total mass. Verify that this gives correct answer for a triatomic molecule. [6+4]

Solution: Let the positions of the masses be x_i measured from some origin on the line joining the atoms. The moment of inertia about the origin, I_0 is given by

$$I_0 = \sum_i m_i x_i^2.$$

Letting $I_{\rm cm}$ denote the moment of inertia about the centre of mass. Using the parallel axes theorem we have

$$I_0 = I_{\rm cm} + MX^2$$

where

$$X = \frac{1}{M} \sum_{i} m_i x_i$$

is the position of the centre of mass and M is the total mass. Therefore we get

$$I_{\rm cm} = I_0 - MX^2 = \frac{1}{M} \left\{ M \sum_i x_i^2 - \left(\sum_i m_i x_i \right)^2 \right\}$$
 (1)

$$= \frac{1}{M} \left\{ \left(\sum_{j} m_{j} \right) \sum_{i} (m_{i} x_{i}^{2}) - \left(\sum_{i} m_{i} x_{i} \right) \left(\sum_{j} m_{j} x_{j} \right) \right\}$$
 (2)

$$= \frac{1}{M} \sum_{ij} \left\{ m_j m_i (x_i^2 - x_i x_j) \right\} \tag{3}$$

$$= \frac{1}{M} \sum_{i \neq j} \left\{ m_j m_i (x_i^2 - x_i x_j) \right\}$$
 (4)

$$= \frac{1}{2M} \sum_{i \neq j} \left\{ m_j m_i (x_i^2 - 2x_i x_j + x_j)^2 \right\}$$
 (5)

In the last step, for S_{ij} symmetric under exchange $i \leftrightarrow j$, we have used

$$\sum_{ij} S_{ij} T_{ij} = \frac{1}{2} \sum_{ij} S_{ij} (T_{ij} + T_{ji})$$

In the sum in (5), each pair ij is counted twice, hence we get

$$I_{\rm cm} = \frac{1}{M} \sum_{\rm pairs} \left\{ m_j m_i (x_i^2 - 2x_i x_j + x_j)^2 \right\}$$
 (6)

$$= \frac{1}{M} \sum_{\text{pairs}} (x_i - x_j)^2. \tag{7}$$

where now each pair is counted once.