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Show that the principal moments of inertia of a linear chain consisting of
two kinds of atoms a, b, with origin chosen to coincide with the centre of
mass, is given by

I1 = I2 =
1

M

∑

i 6=j

mimj d
2
ij , I3 = 0.

where the summation includes each pair of i, j atoms once and dij is the
distance between atoms in the pair and M is the total mass. Verify that
this gives correct answer for a triatomic molecule. [6+4]

,Solution: Let the positions of the masses be xi measured from some
origin on the line joining the atoms. The moment of inertia about the
origin, I0 is given by

I0 =
∑

i

mix
2
i .

Letting Icm denote the moment of inertia about the centre of mass. Using
the parallel axes theorem we have

I0 = Icm +MX2,

where

X =
1

M

∑

i

mixi

is the position of the centre of mass and M is the total mass. Therefore we
get

Icm = I0 −MX2 =
1

M
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∑
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2
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In the last step, for Sij symmetric under exchange i ↔ j, we have used

∑

ij

SijTij =
1

2
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(

Tij + Tji

)
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In the sum in (5), each pair ij is counted twice, hence we get

Icm =
1

M

∑

pairs

{
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2
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2
}

(6)

=
1

M

∑

pairs

(xi − xj)
2. (7)

where now each pair is counted once.
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