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Show that the principal moments of inertia of a linear chain consisting of
two kinds of atoms a,b, with origin chosen to coincide with the centre of
mass, is given by
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where the summation includes each pair of 7,j atoms once and d;jis the

distance between atoms in the pair and M is the total mass. Verify that
this gives correct answer for a triatomic molecule. [6+4]

® Solution: Let the positions of the masses be x; measured from some
origin on the line joining the atoms. The moment of inertia about the

origin, Iy is given by
Iy = Z m,xf
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Letting I., denote the moment of inertia about the centre of mass. Using
the parallel axes theorem we have

Iy = I + MX?,

where 1
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is the position of the centre of mass and M is the total mass. Therefore we
get
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In the last step, for S;; symmetric under exchange i <+ j, we have used
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In the sum in (H), each pair ij is counted twice, hence we get
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where now each pair is counted once.



