
Lecture 3
Generalized Functions

3.1 Generalised functions

The standard definition of a function f is as a mapping from
the set R of real numbers (or a suitable interval of it) into
the real numbers, so that it assigns a number f(x), called its
value, to x ∈ R.

Consider the “step function” defined as follows :

θ(x) = 0 x < 0
θ(x) = 1 x > 0

This is very much like an ordinary function, in fact a constant
function, everywhere except the point x = 0 where it is not
defined. The function is discontinuous at x = 0 and we can
not define its derivative at that point.

The theory of generalised functions is a generalization of
the concept of functions to include functions which may have
discontinuities or singularities at some or other point of their
domain of definition.

For this purpose we must look at an alternative way to
define a function.

There are three different ways to define generalized func-
tions.

1. A generalized function is defined by a sequence of ordi-
nary functions which “tend towards” the singular func-
tion.
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2. A generalized function defined indirectly when integral
of its product with a smooth well behaved functions is
given.

3. A generalized function is defined as boundary value of
an analytic function.

All three methods are used and they complement each
other.

3.2 Sequence of functions

The best example is the Dirac delta function. The sequence
of functions is chosen as

fn(x) =

√

n

π
e−nx2

, n = 1, 2, . . .

The functions looks like
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The “area under the curve” of fn is
∫

∞

−∞
fn(x)dx = 1 (check

that). And for larger values of n the functions become nar-
rowly and sharply peaked around x = 0 always keeping the
area under the curve equal to 1.

The Dirac delta function is the limiting function of this
sequence.

This is not the only sequence of functions which defines
the Dirac delta. There are several (in fact infinitely many)
such sequences. Another sequence of functions is obtained by

1

π

ǫ

x2 + ǫ2

as ǫ → 0. If you really must insist on a sequence, you can
take ǫ = 1/n which is equivalent to ǫ → 0 as n → ∞. This
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gives

gn(x) =
n

π

1

1 + n2x2
, n = 1, 2, . . .

These functions also have unit area under the curve and for
large values of n the functions become very sharply peaked
and narrow near x = 0.

Actually it does not matter which particular sequence is
used for the definition.

The step function can be approximated by a sequence of
functions

hn(x) =
1

2
+

1

2
tanh(nx)

The function tanh(nx) looks like

For large values of n the function becomes more and more
steep at origin and for most of the positive side it is practically
equal to 1 and on the negative side it is −1. Another sequence
is

kn(x) =
1

2
+

1

π
tan−1(nx) n = 1, 2, . . .

where it is understood that we take the values of tan−1(x)
in the range −π/2 to π/2. The function tan−1(x) also has
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graph like tanh(x), and suitable normalization has been done
to secure the right values in the limit to give the step function.

A third interesting example is the “Cauchy principal value”
of 1/x, This function is obtained by omitting the singular part
of 1/x in a symmetrical way from the neighbourhood of x = 0.
Let ǫ be a small number, then we define the Caucy principal
value denoted by

P
(

1

x

)

as the limit ǫ→ 0 of the function

P
(

1

x

)

=
1

x
(|x| > ǫ)

= 0 (|x| < ǫ)

Again we see the discontinuities, We can define it by a se-
quence of functions

Cn(x) =
x

x2 + ǫ2
=

n2x

1 + n2x2
(ǫ =

1

n
)

You must plot these functions. The idea is that for |x| >> ǫ
the function behaves like 1/x and near x = 0 it is linear with
a large slope (n2). The turning point from 1/x to x behavior
is at x = ǫ = 1/n.

We are already in a position to prove an important relation
:

lim
ǫ→0

1

x± iǫ
= P

(

1

x

)

∓ iπδ(x)

The left hand side is a a complex function with a small imag-
inary part

1

x± iǫ
=

x

x2 + ǫ2
∓ i

ǫ

x2 + ǫ2
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When ǫ → 0 the first term on the right hand side becomes
the Cauchy principal value, and the second term gives Dirac
delta function. Therefore (as ǫ→ 0)

1

x± iǫ
= P

(

1

x

)

∓ iπδ(x)

There is another interesting fact we can derive. If a se-
quence fn of functions tends to a generalized function f then
we say that the sequence f ′

n of derivatives of the functions de-
fines the derivative f ′ of the generalized function. You can
check in this way that the derivative of the step function is
the Dirac delta function :

θ′(x) = δ(x)

3.3 Indirect definition

The method of indirect definition of a generalized function
is somewhat like the way police obtains information on hard
criminals through its informers who are themselves better be-
haved but happen to be in the company of the those wanted
men.

In this method the effect of the generalized function is
seen when “it is smeared with a test function”. This means
we integrate the generalized function to be defined with a
known well behaved “test” function φ and give the value of
the integral

(f, φ) ≡
∫ +∞

−∞

f(x)φ(x)dx

The class D of test functions should be sufficiently large so
that a knowledge of (f, φ) for all φ ∈ D is enough to extract
all knowledge of the generalized function f .
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The class of functions D is taken to be the set of all func-
tions which are infinitely differentiable and which vanish out-
side a finite interval.

[Example and remark about the difference between ana-
lytic real, and analytic complex functions.]

It is hoped that for functions with a singularity, the process
of integrating with a very well behaved and smooth function
φ will give meaningful result (f, φ), even though it may not
be possible to define the function at all points by the usual
definition.

For example, for our step function, the definition as a gen-
eralized function is

(θ, φ) =
∫ +∞

0
φ(x)dx

which is obvious in this simple case.

What is not obvious is that this definition can be used
to define a derivative of the step function which is another
generalized function.

If there was a normal function f(x) we would have written
for its derivative f ′ = df/dx

(f ′, φ) =
∫ +∞

−∞

f ′(x)φ(x)dx = [fφ]+∞

−∞
−
∫ +∞

−∞

f(x)φ′(x)dx = −(f, φ′)

the first term being zero because every φ vanishes at ±∞.

We use the above relation to define the derivative f ′ of a
generalised function f ,

(f ′, φ) = −(f, φ′)

As an example we can define the derivative of the step function
θ as

(θ′, φ) = −(θ, φ′) =
∫ +∞

0
φ′(x)dx = −[φ(x)]∞0 = φ(0)
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Therefore θ′ is a new generalized function, traditionally de-
noted by δ and called Dirac delta function, (which Dirac
had defined in 1930 to replace the Kronecker delta δij in quan-
tum mechanics for the continuous case δ(x− y)).

(δ, φ) = φ(0)

If we try to find the values of θ′(x) = δ(x), it is zero for every
x < 0 or x > 0. This is obvious because in these places the
function θ is a constant. The new thing about the definition
of generalized function is the derivative (a generalized deriva-
tive). We expect the derivative to go to infinity, because of
the finite jump in the step function at x = 0. The usual way
to define delta function is to say that it is a function which is
zero everywhere except at x = 0 where it is infinity in such a
way that the integral of the function (“area under the curve”)
is unity

∫

δ(x)dx = 1

What is more δ, being a generalized function itself, has its
own derivative defined

(δ′, φ) = −(δ, φ′) = −φ′(0)

Thus we see that generalized functions have derivatives of
all orders defined – which is good progress considering that
it was not possible to differentiate them even once by by the
usual definition.
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3.4 Fourier Transform of δ

We shall prove a very important formula, which can be written
as

δ(x) =
1

2π

∫ +∞

−∞

eikx dk

As things stand in this formula the integral on the right hand
side is not well defined. This formula is very useful but sym-
bolic. One way is to define it as the limit of convergent inte-
grals

δ(x) = lim
ǫ→0

δǫ(x)

≡ lim
ǫ→0

1

2π

∫ +∞

−∞

eikx−ǫk2 dk

The integral can be done explicitly by “completing the square”

−ǫk2 + ikx = −ǫ
(

k2 − ikx

ǫ

)

= −ǫ
[

(

k − ix

2ǫ

)2

−
(

ix

2ǫ

)2
]

= −ǫK2 − x2

4ǫ

where K = k − ikx/(2ǫ). The integration variable can be
changed from k to K and the integral evaluated

δǫ(x) =
1

2π

∫ +∞

−∞

eikx−ǫk2 dk

=
e−x2/4ǫ

2π

∫ +∞

−∞

e−ǫK2

dK

=
e−x2/4ǫ

2
√
πǫ

These functions give us another insight into the generalized
functions like the delta function. For each finite value of the
positive number ǫ the function is a gaussian curve with a
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width proportional to
√
ǫ and a height proportional to 1/

√
ǫ.

The “area under the curve”, that is
∫

δ(x)dx is always unity,
for any ǫ. As ǫ → 0, the functions δǫ become more and more
narrow and the peak higher and higher at x = 0. The Dirac
delta function is the “singular limit” of such a sequence of
functions.

3.5 Differential equations in generalized func-

tions

Consider the simple differential equation

(

d

dt
+ a

)

F = δ(t)

We already know that θ′(t) = δ(t). Therefore we try a solution
of the type F (t) = θ(t)f(t) where f is an normal unknown
function. Substituting we get

δ(t)f(t) + θ(t)f(t) + aθ(t)f(t) = δ(t)f(0) + θ(t)f ′(t) + aθ(t)f(t)

= δ(t)

This implies that f(0) = 1 and f ′(t) = −af(t) for t > 0.
Therefore the solution is

F (t) = θ(t)e−at

we will need this formula for calculating the Green’s function
for the heat equation.

23


