
Lecture 2
Maxwell’s Equations

Was it a God who wrote these lines ...?

Ludwig Boltzmann
(Vorlesungen uber Maxwells Theorie der Electrizitat und des Lichtes,Vol

II, Munchen, 1893)

2.1 The Basic Fields E and B

Electric and magnetic fields are two facets of the same field
called electromagnetic field (em-field for short). The em-field
is created by charge and current densities (ρ and j respec-
tively). They are governed by Maxwell’s equations :

∇ · E =
ρ

ǫ0
, (Gauss’ Law) (22)

∇ ·B = 0, (23)

∇× E = −∂B
∂t
, (Faraday’s Law) (24)

c2∇×B =
j

ǫ0
+
∂E

∂t
. (25)

These equations are supposed to determine E and B which
are six quantities dependent on space-time. These are eight
equations (two scalar and two vector equations). Are these
over-determined?
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2.2 Conservation of charge

Surely, the Maxwell’s equations do not hold for any arbitrary
independent values of ρ and j. Taking the dot product with
∇ in the last of the Maxwell equations the left hand side is
zero because ∇.(∇ × (any vector)) = 0 and the right hand
side is

1

ǫ0
∇ · j+ ∂

∂t
(∇ · E)

If we substitute from the first of the equations we get the
continuity equation

∂ρ

∂t
+∇ · j = 0 (26)

which simply tells us that in a volume V with its surface S
the depletion of charge per unit tine is accounted for by flow
of charge from the surface :

∫

S
j.n̂da =

∫

V
∇ · jdv = − ∂

∂t

∫

V
ρdv

2.3 Poincare Lemmas

We know that A is any vector field then

∇ · (∇×A) = 0.

What is interesting is that, the converse is also true, at least
in a ‘small region’. If we find that for some vector field B

∇.B = 0

then B must be of the form ∇×A in a neighbourhood.
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Similarly, we know that ∇ × (∇ψ) is always zero. The
Poincare lemma for this case says that if for some vector field
C it is true that ∇×C = 0 then in a small region there exists
a scalar function φ such that we can express C = ∇φ.

These lemmas are very useful. The ‘small region’ or neigh-
bourhood is very often the whole space in simple cases which
we deal with. The exceptions will be discussed separately.

2.4 Potentials

Two of the Maxwell equations do not involve any charge or
current. They are

∇ ·B = 0, and ∇×E = −∂B
∂t

Using the Poincare lemmas we can first write

B = ∇×A.

This vector field is called vector potential or sometimes
magnetic vector potential. Once B is so determined, we can
put it in the Faraday’s law

∇×
(

E+
∂A

∂t

)

= 0 (27)

where the Poincare lemma can be used again and we write

E+
∂A

∂t
= −∇φ.

The field φ is called the scalar potential. The negative
sign is traditional and has the same origin as the mechanical
equation ‘force = - gradient of potential’.
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2.5 Gauge freedom

Electromagnetic fields do not determine the potentials com-
pletely. If magnetic induction B is given to us then vector
potential A and A′ ≡ A+∇Ψ give the same field B because
∇×∇Ψ = 0. The electric field is

E = −∇φ− ∂A

∂t
= −∇φ− ∂A′

∂t
+
∂

∂t
∇Ψ

therefore if we choose a new scalar potential φ′ = φ− ∂Ψ/∂t
then even the electric field does not change :

E = −∇φ′ − ∂A′

∂t

The transformation

A → A+∇Ψ, φ→ φ− ∂Ψ/∂t

is called a gauge transformation and the scalar function Ψ
which governs the gauge transformation as the gauge func-

tion.

2.6 Gauge Fixing

It is simpler to work with potentials rather than em-fields E

and B because in place of the two vector fields we can deal
with only one vector field A and one scalar field φ. Moreover,
we can forget about two of the Maxwell equations because
they are automatically satisfied.

In terms of the potentials, the remaining Maxwell equa-
tions look like

∇2φ+
∂

∂t
∇ ·A = − ρ

ǫ0

c2∇(∇ ·A)− c2∇2A =
j

ǫ0
−∇

(

∂φ

∂t

)

− ∂2A

∂t2
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which can be rearranged as

∇2φ = − ρ

ǫ0
− ∂

∂t
∇ ·A, (28)

(

∇2 − 1

c2
∂2

∂t2

)

A = − j

ǫ0c2
+∇

(

∇ ·A+
1

c2
∂φ

∂t

)

. (29)

The non-uniqueness of potentials is not a big problem. We
can restrict the freedom in the choice of potentials by impos-
ing restrictions of our own on the potentials. Such restrictions
may ‘fix’ the potentials wholly or partly. We can also choose
the condition on potentials conveniently to simplify our equa-
tions.

Out of the infinitely many ways of gauge fixing there are
two popular choices.

1. We impose

∇ ·A+
1

c2
∂φ

∂t
= 0. (30)

This choice is called the Lorentz gauge and the Maxwell
equations become

(

∇2 − 1

c2
∂2

∂t2

)

φ = − ρ

ǫ0
, (31)

(

∇2 − 1

c2
∂2

∂t2

)

A = − j

ǫ0c2
. (32)

2. We require

∇ ·A = 0, (33)

and this choice is called the Coulomb gauge. In this
case the Maxwell equations look like

∇2φ = − ρ

ǫ0
(34)

(

∇2 − 1

c2
∂2

∂t2

)

A = − j

ǫ0c2
+

1

c2
∇∂φ

∂t
(35)
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