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what we now call Riemannian geometry in his Géttingen inaugural lecture, Uber
die Hypothesen, welche der Geometrie zu Grunde liegen. Subsequent work by
Christoffel, Ricci, Levi-Civita, Beltrami, and others developed Riemann’s ideas
into the beautiful mathematical structure deseribed in our chapters on tensor
analysis and curvature. However, it remained for Einstein to see the use physics
could make of non-Euclidean geometry.

2 History of the Theory of Gravitation

At the end of the Principia, Isaac Newton (1642-1727) described gravitation
as a cause that operates on the sun and planets “according to the quantity of solid
matter which they contain and propagates on all sides to immense distances,
decreasing always as the inverse square of the distances.”® There are two parts to
Newton’s law, which were discovered in different ways, and which played different
roles in the development of mechanics from Newton to Einstein.

It was of course Galileo Galilei (1564-1642) who discovered that bodies fall at a
rate independent of their mass. His tools were an inclined plane to slow the fall,
a water clock to measure its duration, and also a pendulum, to avoid rolling friction.
These observations were later improved by Christaan Huygens (1629-1695).
Newton could thus use his second law to conclude that the force exerted by
gravitation is proportional to the mass of the body on which it acts; the third
law then ensures that the force is also proportional to the mass of its source.

Newton was well aware that these conclusions might be only approximately
true, and that the “inertial mass” entering in his second law might not be precisely
the same as the “gravitational mass” appearing in the law of gravitation. If this
were the case, we would have to write Newton’s second law as

F =ma (1.2.1)

and write the law of gravitation as
F=mg (1.2.2)

where g is a field depending on position and other masses. The acceleration at a

given point would be
a = (%) g (1.2.3)
m;

\ L4

and would be different for bodies with different values for the ratio m,/m;; in
particular pendulums of equal length would have periods proportional to
(m;m,)'/2. Newton tested this possibility by experiments with pendulums of
equal length but different composition, and found no difference in their periods.
This result was later verified more accurately by Friedrich Wilhelm Bessel (1784~
1846) in 1830. Then, in 1889, Roland von Eotvos’ succeeded by a different method
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in showing that the ratio m /m; does not differ from one substance to another by
more than one part in 10°. (See Figure 1.2.) E6tvos hung two weights 4 and B
from the ends of a 40-cm beam suspended on a fine wire at its center. At equilibrium

the beam would sag in such a

sl &

wav that
way that

lA(mgAg - miAg_i) = lB(ngg - TniEgz’) (1.2.4)

.
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Figure 1.2 Schematic view of the E6tvos experiment.

where g is the earth’s gravitational field, g, is the vertical component of the centri-
petal acceleration due to the earth’s rotation, and I, and I, are the effective lever
arms for the two weights. [Of course Eo6tvos chose weights and lever arms to be
nearly equal, but the point of his method is that even if 4 is a little bigger than B,
the beam will still sag just so as to make (1.2.4) correct.] At the latitude of Budapest
the centripetal acceleration due to the earth’s rotation also has an appreciable
horizontal component g/, giving to the balance a torque around the vertical axis
equal to
T = 19, — lgmipg,

Using the equilibrium condition to determine Iz, we have then

, m N\ [/m A
T = lmy,g, [1 - (*“’" g — gz)< Bg— gz>
miyg m;p

or, since ¢, is much less than g,
m; m;
T = ’ i4 iB
= Lygm,, [ - ]
My, Mg

Any inequality in the ratios m /m, for the two weights would thus tend to twist
the wire from which the balance was suspended. No twist was detected, and
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Eo6tvos concluded from this that the difference of m;/m, for wood and platinum
was less than 107°.
Einstein was very impressed with the observed equality of gravitational and

inertial mass®

of Equivalence. (It also sets very stringent limits on any possible nongravitational
forces that might exist. For instance, any new kind of electrostatic force in which
the number of nucleons plays the role of charge would have to be much weaker
than gravitation.®) In recent years a group under R. H. Dicke’® at Princeton has
improved on E6tvos’ method, by using the gravitational field of the sun and the
earth’s centripetal acceleration toward the sun, rather than the rotation of the
earth, to produce the torque on the balance. The advantage is that the angle
between the direction of the sun and the balance arm changed with a 24-hr period,
and so Dicke could filter out of his data any noise not at the diurnal frequency. In
this way-he concluded that “‘aluminum and gold fall toward the sun with the same
acceleration, the accelerations differing from each other by at most one part in
10.11” Tt has also been shown (with very much less precision) that neutrons fall

, and as we shall see, it served him as a signpost toward the Principle

with the same acceleration as ordinary matter,’ and that the gravitational force
on electrons in copper is the same as on free electrons.!?

We now move on to the second part of Newton’s law of gravitation, which says
that the force decreases as the inverse square of the distance. This idea was not
entirely original with Newton. Johannus Scotus Erigena (c. 800-c. 877) had guessed
that heaviness and lightness vary with distance from the earth. This theory was
taken up by Adelard of Bath (twelfth century), who realized that a stone dropped
into a very deep well could fall no farther than the center of the earth. (Incidentally,
Adelard also translated Euclid from Arabic into Latin, thus making it available to
medieval Europe.) The first suggestion of an inverse-square law may have bheen
made around 1640 by Ismael Bullialdus (1605-1694). However, it was certainly
Newton who in 1665 or 1666 first deduced the inverse-square law from observa-
tions. He knew that the moon falls toward the earth a distance 0.0045 ft. each
second, and he knew that the moon is 60 earth radii away from the center of the
earth. Hence, if the gravitational force obeys an inverse-square law, then an apple
in Lincolnshire (which is 1 earth radius away from the center of the earth) should
fall in the first second 3600 times 0.0045 ft, or about 16 ft, in good agreement with
the measured value. However, Newton did not publish this calculation for twenty
years, because he did not know how to justify the fact that he had treated the earth
as if its whole mass were concentrated at its center. Meanwhile, it became known to
several members of the Royal Society, including Edmund Halley (1656-1742),
Christopher Wren (1632-1723), and Robert Hooke (1635-1703), that Kepler’s third
law would imply an inverse-square law of force if the orbits of planets were circular.
That is, if the squares of the periods, 7%/v2, are proportional to the cubes of the
radii 73, then the centripetal acceleration »2/r is proportional to 1/r2. However, the
planets actually move on ellipses, not circles, and no one knew how to calculate
their centripetal acceleration. Under Halley’s instigation, Newton in 1684 proved
that planets moving under the influence of an inverse-square-law force would
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indeed obey all the empirical laws of Johannes Kepler (1571-1630); that is, they
would move on ellipses with the sun at a focus, they would sweep out equal areas in
equal times, and the square of their periods would be proportional to the cube of
their major axes. Finally, in 1685, Newton was able to complete his lunar calcula-
tion of 1665. These stupendous accomplishments were published on July 5, 1686,
under the title Philosophiae Naturalis Principia Mathematica.'?

In the following centuries Newton’s law of gravitation met with a brilhant
series of successes in explaining the motion of the moon and planets. Some
irregularities in the orbit of Uranus remained unexplained until, in 1846, they were
independently used by John Couch Adams (1819-1892) in England and Urbain
Jean Joseph LeVerrier (1811-1877) in France to predict the existence and position
of Neptune. The discovery of Neptune shortly thereafter was perhaps the most
splendid verification of Newton’s theory. The motion of the moon and Encke’s
comet (and, later, Halley’s comet) still showed departures from Newtonian theory,
but it was clear that nongravitational forces could be at work.

One problem remained. A vear before his prediction of Neptune, LeVerrier
had calculated that the observed precession of the perihelia of Mercury was
35" [century faster than what would be expected according to Newton’s theory
from the known perturbing fields of the other planets. This discrepancy was
confirmed in 1882 by Simon Newcomb (1835-1909), who gave a value of 43" for
the excess centennial precession.!* LeVerrier had thought that this excess was
probably due to a group of small planets between Mercury and the sun, but after a
careful search none were discovered. Newcomb then suggested that perhaps the
matter responsible for the faint “zodiacal light’’ seen in the plane of the ecliptic
of the solar system was also responsible for the excess precession of Mercury.
However, his calculations showed that the amount of matter needed to account
for the precession of Mercury would, if placed in the plane of the ecliptic, produce a
rotation of the plane of the orbits (that is, a precession of the nodes) of both
Mergury and Venus different from what had been observed. For this reason,
Newcomb was led by 1895 ‘“‘to drop these explorations as unsatisfactory, and to
prefer provisionally the hypothesis that the Sun’s gravitation is not exactly as the
inverse square,”’ !>

Unfortunately this was not the last word. In 1896 H. H. Seeliger constructed
an elaborate model of the zodiacal light, placing the matter responsible on ellipsoids
close to the sun, which could account for the excess precession of Mercury without
upsetting the agreement between theory and experiment for the rotation of the
planes of the inner planets’ orbits. Today we know that this model is totally wrong,
and that there simply is not enough interplanetary matter to account for the
observed excess precession of Mercury. However, Seeliger’s hypothesis, together
with the continued success of Newtonian theory elsewhere, convinced Newcomb
that there was no need to alter the law of gravitation.!?

I do not know whether Einstein was very much influenced, in creating general
relativity, by the problem of the precession of Mercury’s perihelia. However, there
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is no doubt that the first confirmation of his theory was that it predicted an excess
precession of precisely 43”/century.

3 History of the Principle of Relativity

Newtonian mechanics defined a family of reference frames, the so-called
inertial frames, within which the laws of nature take the form given in the Principia.
For instance, the equations for a system of point particles interacting gravitationally
are

xy _ pol mymy(Xy — Xy)

m = v~ 2N (1.3.1
Noar? T Ixy — xl° )

where my is the mass of the Nth particle and xy is its Cartesian position vector
at time ¢. It is a simple matter to check that these equations take the same form
when written in terms of a new set of space-time coordinates:

X' =Rx +vi+d

vty (1.3.2)

I

where v, d, and 7 are any real constants, and R is any real orthogonal matrix. (If O
and O’ use the unprimed and primed coordinate system, respectively, then O’ sees
the O coordinate axes rotated by £, moving with velocity v, displaced at { = 0 by
d, and O’ sees the O clock running behind his own by a time t.) The transforma-

tions (1.2.92) form a 10-narameter oroun (three Fuler
t10r € Luier

ancles in R. nlus three com
15 (1.6.4) Iorm & iU-parameter group (tare u angies three

in R, plus three com-
ponents each for v and d, plus one 7) today called the Galileo group, and the
invariance of the laws of motion under such transformations is today called
Galilean invariance, or the Principle of Galilean Relativity.

What really impressed Newton about all this was that there are a great many
more transformations that do nof leave the equations of motion invariant. For
instance, (1.3.1) does not retain its form if we transform into an accelerating or a
rotating coordinate system, that is, if we let v or R depend on ¢. The equations of
motion can hold in their usual form in only a limited class of coordinate systems,
called inertial frames. What then determines which reference frames are inertial
frames ? Newton answered that there must exist an absolute space, and that the
inertial frames were those at rest in absolute space, or in a state of uniform motion

with respect to absolute space. In his words!®.

“Absolute space, in its own nature and with regard to anything external, always
remains similar and unmovable. Relative space is some movable dimension or
measure of absolute space, which our senses determine by its position with
respect to other bodies, and is commonly taken for absolute space.”
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Newton also described several experiments that demonstrated what he inter-
preted as the effects of rotation with respect to absolute space. The most famous is
the rotating bucket!”:

“If a bucket, suspended by a long cord, is so often turned about that finally
the cord is strongly twisted, then is filled with water, and held at rest together
with the water; and afterwards by the action of a second force, it is suddenly
set whirling about the contrary way, and continues, while the cord is untwisting
itself, for some time in this motion; the surface of the water will at first be level,
just as it was before the vessel began to move; but subsequently the vessel, by
gradually communicating its motion to the water, will make it begin sensibly to
rotate, and the water will recede little by little from the middle and rise up at the
sides of the vessel; its surface assuming a concave form. (This experiment I
have made myself.) . . . At first, when the relative motion of the water in the vessel
was greatest, that motion produced no tendency whatever of recession from the

axia tho wator made no endeavor to move unwards towards the circumfoerence
aXxis, tnc water maQe no enacavor 1o move upwaras towaras tne circumicrence,

by rising at the sides of the vessel, but remained level, and for that reason its
true circular motion had not yet begun. But afterwards, when the relative
motion of the water had decreased, the rising of the water at the sides of the
vessel indicated an endeavor to recede from the axis; and this endeavor reveals
the real circular motion of the water, continually increasing till it had reached its
greatest point, when relatively the water was at rest in the vessel. . . .”

Newton’s conception of absolute space was rejected by his great opponent
Gottfried Wilhelm von Leibniz (1646-1716), who argued that there is no philo-
sophical need for any conception of space apart from the relations of material
objects. The issue was debated in a famous series of letters!® (1715-1716) between
Leibniz and Newton’s supporter, Samuel Clarke (1675-1729), and philosophers
continued the argument, with Newton’s position defended by Leonhard Euler
(1707-1783) and Immanuel Kant (1724-1804) and attacked by Bishop George
Berkeley (1685-1753) in his Principles of Human Knowledge (1710) and Analyst
(1734). Of course none of this high-minded metaphysics led to any idea about how
to develop a dynamical theory that might replace Newton’s.

The first constructive attack on Newtonian absolute space was launched in the
1880’s by the Austrian philosopher Ernst Mach (1836-1916). In his book Drie
Mechanik in threr Entwicklung'® he remarks that

“Newton’s experiment with the rotating vessel of water simply informs us, that
the relative rotation of the water with respect to the sides of the vessel produces
no noticeable centrifugal forces, but that such forces are produced by its relative
motion with respect to the mass of the Earth and the other celestial bodies. No
one is competent to say how the experiment would turn out if the sides of the
vessel increased in thickness and mass until they were several leagues thick.”
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The hypothesis, that there is some influence of the mass of the Earth and the
other celestial bodies” which determines the inertial frames, is called Mack's
principle.

There is a simple experiment that anyone can perform on a starry night, to
clarify the issues raised by Mach’s principle. First stand still, and let your arms
hang loose at your sides. Observe that the stars are more or less unmoving, and
that your arms hang more or less straight down. Then pirouette. The stars will
seem to rotate around the zenith, and at the same time your arms will be drawn
upward by centrifugal force. It would surely be a remarkable coincidence if the
inertial frame, in which your arms hung freely, just happened to be the reference
frame in which typical stars are at rest, unless there were some interaction between
the stars and you that determined your inertial frame.

This argument can be made more precise. The surface of the earth is not
exactly an inertial frame, and of course the rotation and revolution of the earth
give the stars an apparent motion, but these effects can be eliminated by using the
inertial frame defined by the solar system as a whole. In this inertial frame of
reference the average observed rotation of the galaxies with respect to any axis
through the sun is less than about 1 arc-sec/century!*°

We seem to be faced with an unavoidable choice: Either we admit that there
is a Newtonian absolute space-time, which defines the inertial frames and with
respect to which typical galaxies happen to be at rest, or we must believe with
Mach that inertia is due to an interaction with the average mass of the universe.
And if Mach is right, then the acceleration given a particle by a given force ought
to depend not only on the presence of the fixed stars but also, very slightly, on the
distribution of matter in the immediate vicinity of the particle. We shall see in
Chapter 3 that Einstein’s equivalence principle gives an answer to the problem of
inertia that does not refer to a Newtonian absolute space and yet does not quite
agree with the conclusions of Mach. The issue is not closed.

I have not yet mentioned special relativity because, despite its name, it really
does not affect the antinomy between absolute and relative space. However, we
shall have to formulate the equivalence principle in special-relativistic terms, so a
detailed review of special relativity is presented in the next chapter; for the
moment we only take a glance at its history.

The theory of electrodynamics presented in 1864 by James Clark Maxwell
(1831-1879) clearly did not satisfy the principle of Galilean relativity. For one
thing, Maxwell’s equations predict that the speed of light in vacuum is a universal
constant ¢, but if this is true in one coordinate system z', t, then it will not be true
in the “moving” coordinate system z'’, ¢’ defined by the Galilean transformation
(1.3.2). Maxwell himself thought that electromagnetic waves were carried by a
medium,?! the luminiferous ether, so that his equations would hold in only a
limited class of Galilean inertial frames, that is, in those coordinate frames at rest
with respect to the ether.

However, all attempts to measure the velocity of the earth with respect to the
ether failed,?? even though the earth has a velocity of 30 km/sec relative to the
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sun, and about 200 km/sec relative to the center of our galaxy. The most important
experiment was that of Albert Abraham Michelson ( 18524931) and E. W
Morley,?3

5 km/sec, for hg ¢ e h’s ULblLd;l motion and
transverse to it. The accuracy of this result has been recently improved to about
1 km/sec.?*

The persistent failure of experimentalists to discover effects of the earth’s
motion through the ether led theorists, including George Francis Fitzgerald?$
(1851-1901), Hendrik Antoon Lorentz?® (1853-1928), and Jules Henri Poincaré2’
(1854-1912) to suggest reasons why such “ether drift” effects should be in principle
unobservable. (See Figure 1.3.) Poincaré in particular seems to have glimpsed the
revolutionary implications that this would have for mechanics, and Whittaker28
gives the credit for special relativity to Poincaré and Lorentz. Without entering

this controversy 9 it is safe to say that a comprehensive solution to the problems

CONSEIL DE PHYSIQUE SOLVAY

BRUXELLES 1911

Photo Couprie, Broxelles

GOLOSCHMDT PLANCK RUBENS  LINDEMANN HASENOHRL
NERNST BRILLOUIN SOMMERFELD DE BROGLIE HOSTELET
SOLVAY KNUDSEN HERZEN EANS  RUTHERFORD
LORENTZ WARBURG WIEN EINSTEIN LANGEVIN
FERRIN Madome CURIE POINCARE  KAMERLINGH ONNES

Figure 1.3 Founders of the Special Theory of Relativity, at the First Solvay Con-
ference in 1911.
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of relativity in electrodynamics and mechanics was first set out in detail in 1905
by Albert Einstein3® (1879-1955).

Einstein proposed that the Galilean transformation (1.3.2) should be

replaced with a different 10-parameter space-time transformation, called a Lorentz
transformation, that does leave Maxwell’s equations and the speed of light in-
variant. (It is not clear that Einstein was directly influenced by the Michelson-
Morley experiment itself,®* but he specifically refers to “‘the unsuccessful attempts
to discover any motion of the earth relative to the ‘light medium’” in his 1905
paper.®2) The equations of Newtonian mechanics, such as Eq. (1.3.1), are not
invariant under Lorentz transformations; therefore Einstein was led to modify
the laws of motion so that they would be Lorentz-invariant. The new physics,
consisting of Maxwell’s electrodynamics and Einstein’s mechanics, then satisfied a
new principle of relativity, the Principle of Special Relativity, which says that all
physical equations must be invariant under Lorentz transformations. These
developments are discussed in detail in the next chapter.
Galileo group, and therefore the principle of relativity was not originated by the
special theory of relativity, but rather restored by it. Before Maxwell, it might have
been supposed that all of physics is invariant under the Galileo group. Maxwell’s
equations were not invariant under this group, and for half a century it appeared
that only mechanics, not electrodynamics, obeys the principle of relativity. After
Einstein, it was clear that the equations of both mechanics and electrodynamics
are invariant, but with respect to Lorentz transformations, not Galileo trans-
formations. The laws of physics in the form given them by Maxwell and Einstein
could still only be true in a limited class of inertial reference frames, and the
question of what determines these inertial frames was as mysterious after 1905
as in 1686.

It remained to construct a relativistic theory of gravitation. A crucial step
toward. this goal was taken in 1907, when Einstein introduced the Principle of
Equivalence of Gravitation and Inertia,>* and used it to calculate the red shift of
light in a gravitational field. As we shall see in Chapter 3, this principle determines
the effects of gravitation on arbitrary physical systems, but it does not determine
the field equations for gravitation itself. Einstein tried to use the equivalence
principle in 1911 to calculate the deflection of light in the sun’s gravitational
field,3* but the structure of the field was not then correctly understood, and
Einstein’s answer was one-half the “correct”” general-relativistic result, derived
here in Chapter 8. A number of attempts were made in 1911-1912 by Einstein,**
Abraham,3® and Nordstrém®7 to construct relativistic field equations for a single
scalar gravitational field, but Einstein soon became dissatisfied with all such
theories, largely on aesthetic grounds. (The gravitational deflection of light by the
sun had not yet been measured.) A collaboration with the mathematician Marcel
Grossman led Einstein by 1913 to the view3® that the gravitational field must be
identified with the 10 components of the metric tensor of Riemannian space-time
geometry. As discussed in Chapters 4 and 5, the Principle of Equivalence is
incorporated into this formalism through the requirement that the physical

The Lorentz group of transformations is not in any way larger than the
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equations be invariant under general coordinate transformations, not'just Lorentz
transformations, though I do not know to what extent this ‘“General Principle of
Relativity’’ took on in Einstein’s mind a life of its own, apart from the Principle
of Equivalence. During the next two years, Kinstein presented to the Prussian
Academy of Sciences a series of papers?® in which he worked out the field equations
for the metric tensor and calculated the gravitational deflection of light and the
precession of the perihelia of Mercury. These magnificent achievements were
finally summarized by Einstein in his 1916 paper,! titled “The Foundation of the
General Theory of Relativity.”

Not being an historian, I have been content to base this chapter on secondary
sources, aside from the works of Newton, Mach, Maxwell, Newcomb, and Einstein
quoted in the text. The authorities on whom I have drawn most heavily are listed
below.

Non-Euclidean Geometry

O R. Bonola, Non-Euclidean Geometry (Dover Publications, New York, 1955).

O G. Sarton, Ancient Science and Modern Civilization (Yale University Press,
New Haven, 1951), Chapter I.

0O H. Weyl, Space, Time, Matter, 4th ed. (DoverPublications, New York, 1950),
Chapter II.

Gravitation

O F. Cajori, historical and explanatory appendix to Isaac Newton’s Philosophiae
Naturalis Principia Mathematica (University of California Press, 1966).

O E. Guth, in Relativity—Proceedings of the Relativity Conference in the Midwest,
ed. by M. Carmeli, S. I. Fickler, and L. Witten (Plenum Press, New York,
1970), p. 161.

0O M. Jammer, Concepts of Force (Harper and Brothers, New York, 1962),
Chapters IV-VIL

O E. Whittaker, 4 History of the Theories of Aether and KElectricity (Thomas
Nelson and Sons, Edinburgh, 1953), Vol. 11, Chapter V.

O W. P. D. Wightman, The Growth of Scientific Ideas (Yale University Press,
New Haven, 1951), Chapters VIIT, X.
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