CM-07 Solved Problem*
 Small Oscillations

Three spring problem

> A. K. Kapoor
> http://0space.org/users/kapoor
> akkapoor@cmi.ac.in; akkhcu@gmail.com

Find normal frequencies, normal modes and normal coordinates of small oscillations for three identical springs system shown in Fig 1 assuming that the system oscillates in a horizontal $X-Y$ plane. The natural length of each spring is $\sqrt{ } 2$.

Fig. 1 Three Springs

© Solution:

- Choose generalized coordinates

The obvious generalized coordinates to be used are the Cartesian coordinates x, y of the body tied to the springs.

- Kinetic and energy

Now we write the kinetic and potential energies and express them in terms of the generalized coordinates θ, ϕ.

$$
\begin{equation*}
\text { K.E. }=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right) \tag{1}
\end{equation*}
$$

[^0]- Potential energy When the body is at position (x, y), the potential energy of a spring is $\frac{1}{2} k(\Delta L)^{2}$ where ΔL is the extension or compression of the spring. Therefore we get the potential energies of the three springs as

$$
\begin{align*}
& V_{1}=\frac{k}{2}\left(\sqrt{(x-1)^{2}+(y-1)^{2}}-\sqrt{ } 2\right)^{2} \tag{2}\\
& V_{2}=\frac{k}{2}\left(\sqrt{(x+1)^{2}+(y-1)^{2}}-\sqrt{ } 2\right)^{2} \tag{3}\\
& V_{3}=\frac{k}{2}\left(\sqrt{(x+1)^{2}+(y+1)^{2}}-\sqrt{ } 2\right)^{2} \tag{4}
\end{align*}
$$

Hence

$$
\begin{equation*}
\text { P.E. }=V_{1}+V_{2}+V_{3} \tag{5}
\end{equation*}
$$

- Write the Lagrangian The Lagrangian for the three spring problem becomes given by

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} m \dot{y}^{2}-V_{1}-V_{2}-V_{3} \tag{6}
\end{equation*}
$$

- Find the equilibrium points and expand the Lagrangian in powers of displacements from equilibrium. The equilibrium position of the body is obviously the origin, $x=0, y=0$. Therefore, we need to expand the potential in powers of x, y and retain terms of $u p$ to only second order in x and y. For this purpose we will use the known binomial expansion given by

$$
\begin{equation*}
(1+z)^{\alpha} \approx 1+\alpha z+\frac{\alpha(\alpha-1)}{2!} z^{2}+\frac{\alpha(\alpha-1)(\alpha-2)}{3!} z^{3}+\cdots \tag{7}
\end{equation*}
$$

- Expansion of potential energy terms V_{1}, V_{2}, V_{3} in powers of x, y.

$$
\begin{align*}
V_{1}(x, y) & =\frac{1}{2} k\left(\sqrt{(x-1)^{2}+(y-1)^{2}}-\sqrt{ } 2\right)^{2} \\
& =\frac{1}{2} k\left\{x^{2}-2 x+1+y^{2}-2 y+1+2-2 \sqrt{ } 2 \sqrt{(x-1)^{2}+(y-1)^{2}}\right\} \tag{8}\\
& =\frac{1}{2} k\left\{x^{2}+y^{2}+2 x+2 y+4-2 \sqrt{ } 2\left(2-2 x-2 y+x^{2}+y^{2}\right)^{1 / 2}\right\} \tag{9}\\
& =\frac{1}{2} k\left\{x^{2}+y^{2}-2 x-2 y+4-4\left(1-x-y+\frac{1}{2}\left(x^{2}+y^{2}\right)\right)^{1 / 2}\right\} \tag{10}
\end{align*}
$$

Do a binomial expansion of $\left(1+x+y+\frac{1}{2}\left(x^{2}+y^{2}\right)\right)^{1 / 2}$ and verify that

$$
\begin{equation*}
V_{1}(x, y) \approx \frac{1}{4} k\left(x^{2}+y^{2}\right)+\frac{1}{2} k x y \tag{11}
\end{equation*}
$$

In a similar fashion, we would get

$$
\begin{align*}
& V_{2} \approx \frac{1}{4} k\left(x^{2}+y^{2}\right)+\frac{1}{2} k x y \tag{12}\\
& V_{3} \approx \frac{1}{4} k\left(x^{2}+y^{2}\right)-\frac{1}{2} k x y \tag{13}
\end{align*}
$$

Verify These equations

- Lagrangian for small oscillations

Therefore the Lagrangian for small oscillations takes the form

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} m \dot{y}^{2}-\frac{3}{4}\left(x^{2}+y^{2}\right)-\frac{1}{2} k x y+\cdots . \tag{14}
\end{equation*}
$$

- We now write the equations of motion for x and y

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}}\right)=\frac{\partial \mathcal{L}}{\partial x}, \quad \frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{y}}\right)=\frac{\partial \mathcal{L}}{\partial x} . \tag{15}
\end{equation*}
$$

The equation of motion take the form

$$
\begin{align*}
m \ddot{x} & =-k\left\{\frac{3}{2} x+\frac{1}{2} y\right\} \tag{16}\\
m \ddot{y} & =-k\left\{\frac{1}{2} x+\frac{3}{2} y\right\} \tag{17}
\end{align*}
$$

Let us use the notation Writing EOM and proceeding this way is simpler for a system with two degrees of freedom. For systems, with more than two degrees of freedom, one should proceed differently.

- It is now helpful to write the EOM in matrix form:

$$
\binom{\ddot{x}}{\ddot{y}}=-\nu^{2}\left(\begin{array}{cc}
\frac{3}{2} & \frac{1}{2} \tag{19}\\
\frac{1}{2} & \frac{3}{2}
\end{array}\right)\binom{x}{y}
$$

- In a normal mode of vibration all the coordinates oscillate with the same frequency. Therefore we write

$$
\begin{equation*}
x=A e^{i \omega t}, \quad y=B e^{i \omega t} . \tag{20}
\end{equation*}
$$

or in matrix form we $\binom{x}{y}=\mathrm{e}^{i \omega t}\binom{A}{B}$ Substituting (21) in (19), and canceling $e^{i \omega t}$, we get

$$
-\omega^{2}\binom{A}{B}=-\nu^{2}\left(\begin{array}{ll}
\frac{3}{2} & \frac{1}{2} \tag{21}\\
\frac{1}{2} & \frac{3}{2}
\end{array}\right)
$$

Rearranging this equation gives

$$
\left(\begin{array}{cc}
\omega^{2}-\frac{3}{2} \nu^{2} & -\frac{1}{2} \nu^{2} \tag{22}\\
-\frac{1}{2} \nu^{2} & \omega^{2}-\frac{3}{2} \nu^{2}
\end{array}\right)\binom{A}{B}=0 .
$$

This equation will have nontrivial solution for A, B only if the determinant of the 2×2 matrix on the left is zero.

$$
\operatorname{det}\left(\begin{array}{cc}
\omega^{2}-\frac{3}{2} \nu^{2} & -\frac{1}{2} \nu^{2} \tag{23}\\
-\frac{1}{2} \nu^{2} & \omega^{2}-\frac{3}{2} \nu^{2}
\end{array}\right)=0
$$

This determines the frequencies of the normal modes of vibration as solutions of the equation

$$
\begin{align*}
\left(\omega^{2}-\frac{3}{2} \nu^{2}\right)^{2}-\frac{1}{2} \nu^{4} & =0 \tag{24}\\
\left(\omega^{2}-2 \nu^{2}\right)\left(\omega^{2}-\nu^{2}\right) & =0 \tag{25}
\end{align*}
$$

Hence the two frequencies are given by

$$
\begin{equation*}
\omega_{1}=\nu=\sqrt{\frac{k}{m}} \quad \omega_{2}=\sqrt{ } 2 \nu=\sqrt{\frac{2 k}{m}} \tag{26}
\end{equation*}
$$

- Normal Coordinates

Now solve the equations (21), or (22), for A, B for the two frequencies. For the two frequencies, this gives solutions. Write your answers for A, B as column vectors

$$
\begin{array}{ll}
\omega=\omega_{1}, & \chi_{1}=N_{1}\binom{1}{-1} \\
\omega=\omega_{2}, & \chi_{2}=N_{2}\binom{1}{1}
\end{array}
$$

where N_{1}, N_{2} are some normalization constants.

- We fix normalization constants using

$$
\begin{align*}
\chi_{1}^{(T)} M \chi_{1} & =1 \Longrightarrow 2 m N_{1}^{2}=1 \tag{27}\\
\chi_{2}^{(T)} M \chi_{2} & =1 \Longrightarrow 2 m N_{2}^{2}=1 \tag{28}
\end{align*}
$$

- Next we define a matrix S as

$$
S=\left(\begin{array}{ll}
\chi_{1} & \chi_{2}
\end{array}\right)=\sqrt{\frac{1}{2 m_{1}}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)
$$

- Write the coordinates (x, y) in terms of normal coordinates $\left(Q_{1}, Q_{2}\right)$ and also the inverse relation

$$
\begin{equation*}
\binom{x}{y}=S\binom{Q_{1}}{Q_{2}} ; \quad\binom{Q_{1}}{Q_{2}}=S^{-1} \cdot\binom{x}{y} \tag{30}
\end{equation*}
$$

- Verify that the Lagrangian written in terms of normal coordinates becomes

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\dot{Q}_{1}^{2}+\dot{Q}_{2}^{2}\right)-\frac{1}{2}\left(\omega_{1}^{2} Q_{1}^{2}+\omega_{2}^{2} Q_{2}^{2}\right) . \tag{31}
\end{equation*}
$$

In each normal mode of vibration only one normal coordinate varies harmonically with time, all other normal coordinates remain constant.

Time variation of coordinates

From Eq.(31), Euler Lagrange equations for the normal coordinates are easy to write and we get

$$
\begin{equation*}
\ddot{Q}_{1}+\omega_{1}^{2} Q_{1}=0, \quad \ddot{Q}_{2}+\omega_{2}^{2} Q_{2}=0, \tag{32}
\end{equation*}
$$

and the solutions are

$$
\begin{equation*}
Q_{1}(t)=Q_{10} e^{i \omega_{1} t}+\text { c.c., } \quad Q_{2}(t)=Q_{20} e^{i \omega_{1} t}+\text { c.c. } \tag{33}
\end{equation*}
$$

Here the coordinate amplitudes Q_{10}, Q_{20} are complex numbers and c.c. means complex conjugate of the first term. The time variation of the coordinates (x, y) can now be written down as

$$
\begin{equation*}
x(t)=\sqrt{\frac{1}{2 m}}\left(Q_{1}(t)+Q_{2}(t)\right), \quad y(t)=\sqrt{\frac{1}{2 m}}\left(Q_{1}(t)-Q_{2}(t)\right) \tag{34}
\end{equation*}
$$

Taking $Q_{10}=A_{1}+i B_{1}, Q_{20}=A_{2}+i B_{2}$ The four (real) unknown constants $A_{1}, A_{2}, B_{1}, B_{2}$, can be determined if initial conditions on position and velocity vectors, (x, y) and (\dot{x}, \dot{y}), are given.
\otimes_{0} In general the time variation of Cartesian coordinates x, y is superposition of both the frequencies. The motion of the body will trace out a Lissajous figure.
\otimes_{0} Only with special initial conditions, the coordinates will have harmonic time variation with a single frequency.

Questions for you

- Write explicit expressions for most general solution, in terms of the four unknown constants $A_{1}, B_{1}, A_{2}, B_{2}$, for the time dependence of normal coordinates. Do the same for the coordinates (x, y).
- Write initial conditions so the the system may vibrate in one of the normal modes. These modes of vibration are called modes of vibration.
- Geometrically describe the motion of the body in each of the two normal modes.
cm-ymp-07002.pdf VerVer 18.x
Created: Some time in 2018
Printed : May 25, $2019 \quad$ KAPOOR
License: Creative Commons
PROOFS
No Warranty, Implied or Otherwise

[^0]: * cm-ymp-07002 Last Update: May 25, 2019

