Indian Institute of Technology Bhubaneswar School of Basic Sciences

Spring Mid-Semester Examination-2017

Subject Name : Statistical Mechanics
Subject Code : PH5L008

Date : 21 February 2017
Duration : 2 Hours
Full Marks : 30

Answer a new question on a fresh page (strictly) and all parts of a question together

Question - 1

The canonical partition function of some kind of particles is given by,

$$
Q(\beta, V, N)=\left(\frac{V-N b}{\Lambda^{3}}\right)^{N} \exp \left(\frac{a N^{2}}{k_{B} T V}\right)
$$

where,

$$
\Lambda=\frac{h}{\sqrt{2 \pi m k_{B} T}}
$$

is the thermal wavelength or quantum wavelength. \boldsymbol{a}, and \boldsymbol{b} are constants; other symbols have their usual meaning.
(i) Find the internal energy $\boldsymbol{U}(\boldsymbol{T}, \boldsymbol{V}, \boldsymbol{N})$.
(ii) Find the entropy, $\boldsymbol{S}(\boldsymbol{T}, \boldsymbol{V}, \boldsymbol{N})$.
(iv) Does the expression for \boldsymbol{S}, provide a valid fundamental relation ${ }^{1}$? If not, what is wrong with \boldsymbol{S} ? How can \boldsymbol{Q} be corrected ?

[^0]
SOLUTION

(i) ENERGY

$$
\begin{aligned}
\ln Q & =N \ln \left(\frac{V-N b}{\Lambda^{3}}\right)+\frac{\beta a N^{2}}{V} \\
\frac{\partial \ln Q}{\partial \beta} & =-\frac{3 N}{\Lambda} \frac{\partial \Lambda}{\partial \beta}+\frac{a N^{2}}{V} \\
& =-3 N \frac{\partial \ln \Lambda}{\partial \beta}+\frac{a N^{2}}{V}
\end{aligned}
$$

We have,

$$
\begin{aligned}
\Lambda=\frac{h}{\sqrt{2 \pi m k_{B} T}} & =\frac{h}{\sqrt{2 \pi m}} \beta^{1 / 2} \\
\ln \Lambda & =\frac{1}{2} \ln \beta+\ln \left(\frac{h}{\sqrt{2 \pi m}}\right) \\
\frac{\partial \ln \Lambda}{\partial \beta} & =\frac{1}{2 \beta}=\frac{k_{B} T}{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\frac{\partial \ln Q}{\partial \beta} & =-\frac{3 N}{2} k_{B} T+\frac{a N^{2}}{V} \\
E=-\frac{\partial \ln Q}{\partial \beta} & =\frac{3 N k_{B} T}{2}-\frac{a N^{2}}{V}
\end{aligned}
$$

(ii) ENTROPY

Let us first calculate the free energy,

$$
\begin{aligned}
F & =-k_{B} T \ln Q \\
& =-N k_{B} T \ln \left(\frac{V-N b}{\Lambda^{3}}\right)-\frac{a N^{2}}{V}
\end{aligned}
$$

Entropy is given by,

$$
\begin{aligned}
S & =\frac{U-F}{T} \\
& =\frac{3 N k_{B}}{2}+N k_{B} \ln \left(\frac{V-N b}{\Lambda^{3}}\right)
\end{aligned}
$$

(iii) ISSUES ON THE EXPRESSION FOR ENTROPY

Note at $\boldsymbol{T}=\mathbf{0}$, we find $\boldsymbol{E}=\boldsymbol{F}=-\boldsymbol{a} \boldsymbol{N}^{\mathbf{2}} / \boldsymbol{V}$ and hence $\boldsymbol{S}=\mathbf{0}$ which is consistent with thermodynamics. However for $\boldsymbol{T} \neq \mathbf{0}$, the expression for entropy does not
provide a valid fundamental equation because it is not extensive. In other words $\boldsymbol{S}(\boldsymbol{T}, \boldsymbol{\eta} \boldsymbol{V}, \boldsymbol{\eta} \boldsymbol{N}) \neq \boldsymbol{\eta} \boldsymbol{S}(\boldsymbol{T}, \boldsymbol{V}, \boldsymbol{N})$. Note \boldsymbol{T} is intensive. \boldsymbol{S} has to be first order homogeneous function of its extensive variables only.
To render entropy extensive, Boltzmann introduced the notion of indistinguishability of particles; swapping of particles does not produce a new micro state. There are N ! micro states that can be produced by particle swapping. Boltzmann recommended division by $N!$. We can correct the canonical partition function by introducing Boltzmann counting, and we get,

$$
Q(\beta, V, N)=\frac{1}{N!}\left(\frac{V-N b}{\Lambda^{3}}\right)^{N} \exp \left(\frac{a N^{2}}{k_{B} T V}\right)
$$

We have,

$$
\ln Q=N \ln \left(\frac{V-N b}{N \Lambda^{3}}\right)^{N}+\frac{\beta a N^{2}}{V}+N
$$

It is clear from the above that the expression for energy ${ }^{2}$ will be the same as earlier. The free energy is given by,

$$
F=-N k_{B} T \ln \left(\frac{V-N b}{N \Lambda^{3}}\right)-\frac{a N^{2}}{V}-N k_{B} T
$$

Entropy

$$
S=\frac{5 N k_{B}}{2}+N k_{B} \ln \left(\frac{V-N b}{N \Lambda^{3}}\right)
$$

The above expression for entropy is extensive and hence consistent with thermodynamics.

[^1]
Question - 2

A system of $\boldsymbol{n}=\mathbf{1 0 0}$ moles of an ideal gas is taken through a quasi-static reversible cyclic process $\boldsymbol{A} \rightarrow \boldsymbol{B} \rightarrow \boldsymbol{C} \rightarrow \boldsymbol{A}$ depicted below on the Pressure-Volume phase plane.

Let
$V(A)=3 \mathrm{M}^{3} \quad P(A)=10^{5}$ ра
$V(C)=6 \mathrm{M}^{3} \quad P(B)=2 \times 10^{5} \mathrm{pa}$
Let \boldsymbol{D} be the point on the phase diagram at which the temperature is maximum. Find the pressure, volume, and temperature at \boldsymbol{D}. The entropy at the point \boldsymbol{A} is taken as zero : $\boldsymbol{S}(\boldsymbol{A})=\mathbf{0}$. Find the value of entropy at \boldsymbol{D}.
$C_{V}=3 n R / 2 ; C_{P}=5 n R / 2 ; R=8.31447$ joules $\left.(\text { kelvin })^{-1}(\mathrm{~mol})^{-1}\right)$

Solution

- Segment $\boldsymbol{A B}$

Consider points on the line segment $\boldsymbol{A B}$. The volume remains the same at $\mathbf{3} \mathrm{M}^{3}$; the pressure increases from $10^{\mathbf{5}}$ pa at \boldsymbol{A} to $\mathbf{2} \times 10^{5}$ pa at \boldsymbol{B}. The temperature is given by

$$
T=\frac{P V}{n R}=\frac{3 P}{100 R}
$$

Hence in this segment the temperature is maximum at \boldsymbol{B}. We have

$$
T(B)=\frac{6 \times 10^{5}}{100 R}=721.634 \text { kelvin. }
$$

- Segment $A C$

Consider points on the line segment $\boldsymbol{A C}$. The pressure remains constant at $\mathbf{1 0}^{\mathbf{5}} \mathrm{pa}$. The volume increases from $\mathbf{3} \mathrm{M}^{\mathbf{3}}$ at \boldsymbol{A} to $\mathbf{6} \mathrm{M}^{\mathbf{3}}$ at \boldsymbol{C}. The temperature is given by

$$
T=\frac{P V}{n R}=\frac{10^{5} V}{n R}
$$

Hence in this segment, the temperature is maximum at \boldsymbol{C} and is given by

$$
T(C)=\frac{6 \times 10^{5}}{100 R}=721.634 \text { kelvin }
$$

- Segment BC

Consider points on the segment $\boldsymbol{B C}$. The equation of the line passing through \boldsymbol{B} and \boldsymbol{C} can be formally written as

$$
P(V)=\alpha_{1} V+\alpha_{2}
$$

The slope $\boldsymbol{\alpha}_{\boldsymbol{1}}$ and the intercept $\boldsymbol{\alpha}_{\mathbf{2}}$ can be calculated from the following linear equations.

$$
\left(\begin{array}{ll}
3 & 1 \\
6 & 1
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}=\binom{2 \times 10^{5}}{10^{5}}
$$

Solving the above

$$
\binom{\alpha_{1}}{\alpha_{2}}=\left(\begin{array}{cc}
-1 / 3 & +1 / 3 \\
+2 & -1
\end{array}\right)\binom{2 \times 10^{5}}{10^{5}}
$$

We get

$$
\alpha_{1}=-\frac{10^{5}}{3} ; \quad \alpha_{2}=3 \times 10^{5}
$$

Thus on the segment $\boldsymbol{B C}$

$$
\begin{aligned}
P(V) & =\alpha_{1} V+\alpha_{2} \\
T(V) & =\frac{P V}{n R} \\
& =\frac{1}{n R}\left(\alpha_{1} V^{2}+\alpha_{2} V\right)
\end{aligned}
$$

To determine the value of \boldsymbol{V} at which \boldsymbol{T} is extremum, we take the derivative with respect to \boldsymbol{V} and set it to zero.

$$
\frac{d T}{d V}=\frac{1}{n R}\left(2 \alpha_{1} V+\alpha_{2}\right)=0
$$

Solving the above,

$$
V^{\star}=\frac{2 \alpha_{1}}{\alpha_{2}}=4.5 \mathrm{M}^{3}
$$

Thus at $\boldsymbol{V}=\boldsymbol{V}^{\star}=4.5 \mathrm{M}^{3}$ the temperature is an extremum. To find if the extremum is maximum or minimum we take the second derivative and evaluate it at \boldsymbol{V}^{\star}. We get,

$$
\begin{aligned}
\left.\frac{d^{2} T}{d V^{2}}\right|_{V^{\star}} & =\frac{2 \alpha_{1}}{n R} \\
& =\text { negative since } \alpha_{1} \text { is negative }
\end{aligned}
$$

Therefore at $\boldsymbol{V}=\boldsymbol{V}^{\star}=4.5 \mathrm{M}^{3}$ the temperature is maximum. We have

$$
P^{\star}=P\left(V^{\star}\right)=\alpha_{1} V^{\star}+\alpha_{2}=1.5 \times 10^{5} \text { pa }
$$

At $\boldsymbol{D}=\left(\boldsymbol{P}^{\star}, \boldsymbol{V}^{\star}\right)$ on the phase diagram, the temperature is maximum. We recognize

$$
\begin{aligned}
P^{\star} & =\frac{P(B)+P(C)}{2} \\
V^{\star} & =\frac{V(B)+V(C)}{2}
\end{aligned}
$$

\boldsymbol{D} is the midpoint of the line segment $\boldsymbol{B C}$.

- Temperature at D

In the phase diagram, the temperature is maximum at the point \boldsymbol{D}. The temperature at \boldsymbol{D} is given by

$$
\begin{aligned}
T(D) & =\frac{P^{\star} V^{\star}}{n R} \\
& =\frac{4.5 \times 1.5 \times 10^{5}}{100 \times 8.31447}=811.838 \text { kelvin }
\end{aligned}
$$

- Entropy at D

It is given that $\boldsymbol{S}(\boldsymbol{A})=\mathbf{0}$. To calculate entropy at \boldsymbol{D} we select a convenient path (reversible process) that takes us from \boldsymbol{A} to \boldsymbol{D}. Let \boldsymbol{E} denote the midpoint od the segment $\boldsymbol{A B}$. consider the path $\boldsymbol{A} \rightarrow \boldsymbol{E} \rightarrow \boldsymbol{D}$.

The process $\boldsymbol{A} \rightarrow \boldsymbol{E}$ is at constant volume; and the process $\boldsymbol{E} \rightarrow \boldsymbol{D}$ is at constant pressure. Therefore

$$
\begin{aligned}
S(D) & =S(A)+C_{V} \int_{P(A)}^{P(E)} \frac{d P}{P}+C_{P} \int_{V(E)}^{V(D)} \frac{d V}{V} \\
& =C_{V} \ln 1.5+C_{P} \ln (4.5 / 3) \\
& =\frac{n R}{2}[3 \ln 1.5+5 \ln (4.5 / 3)] \\
& =134.849 \text { joules /kelvin }
\end{aligned}
$$

- Results in a nutshell

$P(D)$	$1.5 \times 10^{5} \mathrm{pa}$
$V(D)$	$4.5 \mathrm{M}^{3}$
$T(D)$	811.838 kelvin
$S(D)$	134.849 joules $/$ kelvin

Question - 3

Consider a closed system of \boldsymbol{N} non-interacting particles at temperature \boldsymbol{T} Kelvin. Let $\boldsymbol{\epsilon}=\boldsymbol{k}_{\boldsymbol{B}} \boldsymbol{T}$ Joules. These particles occupy three non-degenerate energy levels :

- ground state of energy zero;
- first excited state of enegy $\boldsymbol{\epsilon}$ Joules and
- second excited state of energy $2 \boldsymbol{\epsilon}$ Joules.

The (canonical ensemble) average of energy is $\mathbf{1 0}^{\mathbf{2 5} \boldsymbol{\epsilon}}$ Joules. The particles are identical and distinguishable. What is the value of \boldsymbol{N} ?
(6 Marks)

SOLUTION

$$
\begin{aligned}
Q(T, V, N) & =[1+\exp (-\beta \epsilon)+\exp (-2 \beta \epsilon)]^{N} \\
\ln Q & =N \ln [1+\exp (-\beta \epsilon)+\exp (-2 \beta \epsilon)] \\
U=\langle E\rangle=-\left(\frac{\partial \ln Q}{\partial \beta}\right)_{V, N} & =\frac{\epsilon \exp (-\beta \epsilon)+2 \epsilon \exp (-2 \beta \epsilon)}{1+\exp (-\beta \epsilon)+\exp (-2 \beta \epsilon)} \\
U & =N \frac{\epsilon e^{-1}+2 \epsilon e^{-2}}{1+e^{-1}+e^{-2}}=N \epsilon \frac{e+2}{e^{2}+e+1}
\end{aligned}
$$

It is given that $\boldsymbol{U}=\mathbf{1 0}^{\mathbf{2 5} \boldsymbol{\epsilon}}$. Therefore,

$$
N=10^{25} \times \frac{e^{2}+e+1}{e+2}=2.354 \times 10^{25}
$$

Question-4

Let $\left\{\boldsymbol{E}_{\boldsymbol{n}}=\boldsymbol{n \epsilon}: \boldsymbol{n}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \cdots\right\}$, be the energy levels of a macroscopic closed system in equilibrium at $\boldsymbol{T}=\mathbf{3 0 0}$ kelvin, where $\boldsymbol{\epsilon}=\mathbf{3 0 0} \mathrm{k}_{\boldsymbol{B}}$ joules. The \boldsymbol{n}-th energy level is $(n+1)$-fold degenerate. Calculate the entropy of the system. Write your answer to third decimal accuracy.
$\left(k_{B}=1.381 \times 10^{-23}\right)$

SOLUTION

$$
\begin{aligned}
E_{n} & =n \epsilon ; \quad g_{n}=n+1 \quad n=0,1,2, \cdots \\
Q & =\sum_{n=0}^{\infty} g_{n} \exp \left(-\beta E_{n}\right)=\sum_{n=0}^{\infty}(n+1) \exp (-\beta \epsilon n) \\
& =\frac{1}{[1-\exp (-\beta \epsilon)]^{2}} \\
\ln Q & =-2 \ln [1-\exp (-\beta \epsilon)] \\
U=\langle E\rangle=-\frac{\partial \ln Q}{\partial \beta} & =\frac{2 \epsilon \exp (-\beta \epsilon)}{1-\exp (-\beta \epsilon)} \\
F & =\left[-\frac{2}{1-\exp (-\beta \epsilon)}\right][-\exp (-\beta \epsilon)][-\epsilon] \\
S \beta=\frac{U-\ln [1-\exp (-\beta \epsilon)]}{T} & =\frac{2 \epsilon \exp (-\beta \epsilon)}{T[1-\exp (-\beta \epsilon)]}-2 k_{B} \ln [1-\exp (-\beta \epsilon)] \\
& =\frac{2\left(300 k_{B}\right) e^{-1}}{300\left(1-e^{-1}\right)}-2 k_{B} \ln \left(1-e^{-1}\right) \\
\frac{S}{k_{B}} & =2+\frac{2}{e-1}-2 \ln (e-1) \\
& =2.081 \\
S & =1.381 \times 2.081 \times 10^{-23} \\
& =2.874 \times 10^{-23} \mathrm{joules} / \mathrm{kelvin}
\end{aligned}
$$

[^0]: ${ }^{1}$ except perhaps at $\boldsymbol{T}=\mathbf{0}$.

[^1]: ${ }^{2}$ Energy obtained by taking partial derivative of $\ln \boldsymbol{Q}$ with respect to $\boldsymbol{\beta}$

