Indian Institute of Technology Bhubaneswar
School of Basic Sciences
Spring Mid-Semester Examination-2017

Subject Name : Statistical Mechanics
Subject Code : PH5L008

Date : 21 February 2017
Duration : 2 Hours
Full Marks : 30

Answer a new question on a fresh page (strictly) and all parts of a question together
(1) The canonical partition function of some kind of particles is given by,

$$
Q(T, V, N)=\left(\frac{V-N b}{\Lambda^{3}}\right)^{N} \exp \left(\frac{a N^{2}}{V k_{B} T}\right)
$$

where,

$$
\Lambda=\frac{h}{\sqrt{2 \pi m k_{B} T}}
$$

\boldsymbol{a}, and \boldsymbol{b} are constants; other symbols have their usual meaning.
(i) Find the internal energy $\boldsymbol{U}(\boldsymbol{T}, \boldsymbol{V}, \boldsymbol{N})$.
(ii) Find the entropy, $\boldsymbol{S}(\boldsymbol{T}, \boldsymbol{V}, \boldsymbol{N})$.
(iii) Does the expression for \boldsymbol{S}, provide a valid fundamental relation ${ }^{1}$? If not, what is wrong with \boldsymbol{S} ? How can \boldsymbol{Q} be corrected?

[^0](2) A system of $\boldsymbol{n}=\mathbf{1 0 0}$ moles of an ideal gas is taken through a quasi-static reversible cyclic process : $\boldsymbol{A} \rightarrow \boldsymbol{B} \rightarrow \boldsymbol{C} \rightarrow \boldsymbol{A}$ depicted below on the Pressure-Volume phase plane.

Let
$V(A)=3 \mathrm{M}^{3} \quad P(A)=10^{5}$ pa
$V(C)=6 \mathrm{M}^{3} \quad P(B)=2 \times 10^{5} \mathrm{pa}$
Let \boldsymbol{D} be the point on the phase diagram at which the temperature is maximum. Find the pressure, volume, and temperature at \boldsymbol{D}. The entropy at \boldsymbol{A} is taken as zero : $\boldsymbol{S}(\boldsymbol{A})=\mathbf{0}$. Find the value of entropy at \boldsymbol{D}.
$C_{V}=3 n R / 2 ; C_{P}=5 n R / 2 ; R=8.31447$ joules $\left.(\text { kelvin })^{-1}(\mathrm{~mol})^{-1}\right)$
(3) Consider a closed system of \boldsymbol{N} non-interacting point particles at temperature \boldsymbol{T} kelvin. Let $\boldsymbol{\epsilon}=\boldsymbol{k}_{\boldsymbol{B}} \boldsymbol{T}$. These particles occupy three non-degenerate energy levels :
ground state of energy zero;
first excited state of energy $\boldsymbol{\epsilon}$ joules and second excited state of energy $\mathbf{2 \epsilon}$ joules.

The (canonical ensemble) average of energy is $\mathbf{1 0}^{\mathbf{2 5} \boldsymbol{\epsilon}}$ joules. The particles are identical and distinguishable ${ }^{2}$. What is the value of \boldsymbol{N} ?
(6 Marks)
(4) Let $\left\{\boldsymbol{E}_{n}=\boldsymbol{n \epsilon}: n=0,1,2, \cdots\right\}$, be the energy levels of a macroscopic closed system in equilibrium at $\boldsymbol{T}=\mathbf{3 0 0}$ kelvin, where $\boldsymbol{\epsilon}=\mathbf{3 0 0} \mathrm{k}_{\boldsymbol{B}}$ joules. The \boldsymbol{n}-th energy level is $(n+1)$-fold degenerate. Calculate the entropy of the system. Write your answer to third decimal accuracy. $\left(k_{B}=1.381 \times 10^{-\mathbf{2 3}}\right)$
(6 Marks)

[^1]
[^0]: ${ }^{1}$ except perhaps at $\boldsymbol{T}=\mathbf{0}$.

[^1]: ${ }^{2}$ The \boldsymbol{N} particle partition function is given by the single-particle partition function raised to the power \boldsymbol{N} : $\boldsymbol{Q}_{\boldsymbol{N}}=\boldsymbol{Q}_{1}^{\boldsymbol{N}}$. Since the particles are distinguishable we do not divide by \boldsymbol{N} !.

