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1.1 Starting from the first law of thermodynamics, show that a quasi-static reversible adia-
batic process in an ideal gas is described by the relation,

• PV γ = Θ1

• TV γ−1 = Θ2

• P 1−γT γ = Θ3

where Θi : i = 1, 2, 3 are constants and γ = CP/CV . The value of γ for a mono
atomic ideal gas is 5/3.

1.2 Consider one mole of an ideal gas. A molecule of the gas is mono atomic and is spherically
symmetric. The system of ideal gas is in equilibrium. Its temperature T1 = 300 k and
its volume V1 = 1 litre. Since the system is in equilibrium, it can be represented by a
point A = (V1, T1), in the temperature-volume thermodynamic phase plane. We are
taking Volume along the X axis and Temperature along the Y axis.

Now consider a process by which the system expands to a volume V2 = 2 litres. The
process is adiabatic.

Case-1 : The process is quasi static and reversible. Let T2 be the temperature of the system
at the end of the process. Let B = (V2, T2) denote the system at the end of the
process. Find T2. The process A → B can be represented by a curve joining A to
B. The curve is called an adiabat.

Case-2 : The process is not reversible. Hence the process can not be represented by a curve
in the thermodynamic phase diagram. The system disappears from A at the start
of the process. At the completion of the process, if we wait long enough, the system
would equilibrate and appear at a point B′ = (T ′

2
, V2) in the phase diagram. There

is no ready-made formula for calculating T ′
2
. Nor is there a formula for calculating

the increase in entropy of the system in the irreversible process. Also these quantities
depend on how far away the irreversible process is from its reversible companion.
However B′ is on a line parallel to Y axis and passing through B. Employing the
Second law of thermodynamics

• find if the point B′ is vertically above or below the point B.

• calculate the increase in entropy in terms of T ′
2
.
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Hint : Consider a constant-volume, quasi static reversible process that takes the system from B′ to B.
Then take the system by a reversible adiabat from B to A and complete the cycle. The cyclic process,

A → B′ → B → A,

thus has three segments, one of them irreversible and the other two reversible.

• The segment A → B′ is irreversible and adiabatic.

• The segments B′ → B is reversible and occurs at constant volume.

• The segment B → A is reversible and adiabatic.

Employ the Second law for the cyclic process.

1.3 A Carnot engine operates between temperatures T1 and T2 (< T1). Plot the Carnot
cycle on Temperature-Entropy phase plane. Take S along the X axis and T along the Y
axis. Employ this phase diagram and the first law of thermodynamics to show that the
efficiency of a Carnot engine is given by,

η =
W

q1

= 1 −
T2

T1

where W is the work done by the engine during one cycle.

1.4 The step function is given by

Θ(x) =





0 for x < 0

1 for x > 0

Consider a function defined as,

fǫ(x) =





0 for −∞ ≤ x ≤ −
ǫ

2

(
1

ǫ

)
x +

ǫ

2
for −

ǫ

2
≤ x ≤ +

ǫ

2

1 for +
ǫ

2
≤ x ≤ +∞

It is easily verified that

lim
ǫ→0

fǫ(x) = Θ(x).

The Dirac-delta function is defined as the derivative of the step function :

δ(x) =
d

dx
Θ(x) = lim

ǫ→0

d

dx
fǫ(x)

Employing the above representation of the Dirac-delta function show that,
∫ +∞

−∞

δ(x) dx = 1

∫ +∞

−∞

g(x) δ(x − x0) dx = g(x0)
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2.1 A thermally insulated chamber contains 1000 moles of mono-atomic ideal gas1 at 10 atm.
pressure. Its temperature is 300 K. The gas leaks out slowly through a valve into the
atmosphere. The leaking process is quasi static, reversible and adiabatic2.

(i) How many moles of gas shall be left in the chamber eventually?

(ii) What shall be the temperature of the gas left in the chamber ?

1 atm = 0.981 × 106 Pa ; γ =
CP

CV

=
5

3
.

2.2 Palash Pal, An Introductory Course of Statistical Mechanics, Narosa (2008)p.4,exercise
4.1

The internal energy U (of a single component thermodynamic system) expressed as a
function of entropy S, and volume V , is of the form

U(S, V ) = a S4/3V α,

where a and α are constants.

(a) What is the value3 of α ?

(b) What is the temperature of the system ?

(c) What is the pressure of the system ?

(d) The pressure of the system obeys a relation given by

P = ωU/V,

where ω is a constant. Find the value of ω.

(e) if the energy of the system is held constant, the pressure and volume are related by

PV γ = constant.

Find γ.

1PV = nRT
2PV γ = Θ where Θ is a constant.
3HINT : U, S, and V are extensive thermodynamic properties. Therefore U is a first order homogeneous

function of S, and V . In other words U(λS, λV ) = λU(S, V ).
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2.3 Consider an isolated system of N identical, indistinguishable, and non-interacting point
particles, in two dimensions. Each particle is of mass m. The particles are confined to
an area A.

Let Ω̂(E,A,N) denote the number of micro states of the (macroscopic) system with
energy less than or equal to E.

(i) Show that4,

Ω̂(E,A,N) =
1

h2N

AN

N !

(2πmE)N

Γ (N + 1)

(ii) Derive an expression for the density of states of a single particle.

Carry out quantum-counting of micro states of a single particle confined to a two dimen-
sional box of length L and

(iii) show that the resulting expression is the same as the one obtained by classical
Boltzmann counting.

2.4 Consider an isolated system of N identical, indistinguishable, and non-interacting point
particles, in one dimension. Each particle is of mass m. The particles are confined to a
length L.

Let Ω̂(E,L,N) denote the number of micro states of the (macroscopic) system with
energy less than or equal to E.

(i) Show that5,

Ω̂(E,L,N) =
1

hN

LN

N !

(2πmE)N/2

Γ
(
N
2
+ 1

)

(ii) Derive an expression for the density of states of a single particle.

Carry out quantum-counting of micro states of a single particle confined to a one dimen-
sional segment of length L and

(iii) show that the resulting expression is the same as the one obtained by classical
Boltzmann counting.

2.5 A macroscopic system can be in any one of the two energy levels labelled 1 and 2, with
probabilities p1 and p2 respectively. The degeneracy of the energy level labelled 1 is g1

and that of the energy level labelled 2 is g2. Show that entropy of the system is given by,

S = −kB

2∑

i=1

pi ln pi +

2∑

i=1

pi [kB ln gi]

4Hint : The microstate of a single particle in two dimension, is specified a string of four numbers, two for
position and two for momentum. The microstate ofN particles is specified by an ordered string of 4N numbers.

5Hint : The micro state of a single particle in one dimension is specified by two numbers, one for position
and one for momentum. The micro state of N particles in one dimension requires an ordered string of 2N
numbers.
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3.1 Consider an isolated system of N non-interacting particles occupying two states of ener-

gies −ǫ and +ǫ. The energy of the system is E. Let x =
E

Nǫ
.

(i) Show that the entropy of the system is given by6

S(E) = NkB

[(
1 + x

2

)
ln

(
2

1 + x

)
+

(
1 − x

2

)
ln

(
2

1 − x

)]

(ii) Show that β =
1

kBT
=

1

2ǫ
ln

(
1 − x

1 + x

)

3.2 A particular system obeys the fundamental equation,

U = A
N3

V 2
exp

(
S

NkB

)
,

where A (joule metre2) is a constant. Initially the system is at T = 317.48 kelvin, and
P = 2× 105 pascals. The system expands reversibly until the pressure drops to a value
of 105 pascals, by a process in which the entropy does not change. What is the final
temperature7 ?

3.3 Roll two independent fair dice. Let n1 and n2 denote the results of the first and the
second die respectively. Define a random variable as follows.

n =





max(n1, n2) if n1 6= n2

n1 if n1 = n2

Find the mean and variance of n.

3.4 Let x = X(ω) denote a real random variable and f(x) its probability density function.
The characteristic function of the random variable is given by the Fourier transform of

6HINT : Let n1 and n2 denote the number of particles in the two states of energy−ǫ and+ǫ respectively. We
have Ω̃ = N !/(n1!n2!); S = kB ln Ω̃; Calculate n1 and n2 by solving : n1 +n2 = N and n2ǫ−n1ǫ = E.

7HINT: Take partial derivatives of U with respect to S and V and get T and P respectively. Find a relation
between P and T when entropy does not change.
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its density function :

φ(k) =

∫ +∞

−∞

dx exp(−ikx)f(x) =

∞∑

n=0

(−ik)n

n!

∫ +∞

−∞

dx xn f(x)

=

∞∑

n=0

(−ik)n

n!
Mn

where Mn denotes the n-th moment. The coefficient of (−ik)n/n! in the power series
expansion of the characteristic function gives the n-th moment.

Consider random variable x with an exponential probability density function,

f(x) = exp(−x) for 0 ≤ x ≤ +∞

• Show that the characteristic function of the exponential random variable is given by,

φ(k) =
1

1 + ik

• From the characteristic function derive expressions for the moments of the exponen-
tial random variable and show that

Mn = 〈xn〉 =

∫ ∞

0

dx xn exp(−x) = Γ(n + 1) = n!

3.5 Take a p-coin8. Toss the coin independently until ”Heads” appears for the first time
whence the game stops.

• What are the elements of the sample space ?

Let n denote the number of ”Tails” in a game.

• Derive an expression for P (n) - the probability distribution function of the integer
random variable n.

The moment generating function is defined as P̃ (z) =

∞∑

n=0

zn P (n).

• Show that the the moment generating function of the random variable n is given by

P̃ (z) =
p

1 − qz
.

• From the moment generating function calculate the mean, ζ, and variance σ2 of the
random variable n.

• Show that P (n) and P̃ (z) can be expressed as,

P (n) =
ζn

(1 + ζ)n+1

P̃ (z) =
1

1 + ζ(1− z)
8A p-coin is one for which the probability of ”Heads” is p and that of ”Tails” is q = 1 − p.
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4.1 A closed system consists of 3N classical non-interacting an-harmonic oscillators in equi-
librium at temperature T . The energy of a single an-harmonic oscillator is given by

E(q, p) =
p2

2m
+ bq2ν where ν ≥ 2 is an integer and b is a constant.

(i) Derive an expression for the canonical partition function by carrying out the following
integral :

Q =
1

h

∫ +∞

−∞

dq

∫ +∞

−∞

dp exp

[
−β

(
p2

2m
+ bq2ν

)]

(ii) Show that the heat capacity of the system is given by9

C =
∂〈E〉
∂T

=

(
ν + 1

2ν

)
3NkB.

4.2 Consider a system of N distinguishable non-interacting particles each of which can be
in states designated as 1 and 2. Energy of state 1 is ǫ1 = −ǫ and that of state 2 is
ǫ2 = +ǫ. Let the number of particles in states 1 and 2 be N1 and N2 respectively. We
have

N = N1 + N2

and
E = N1ǫ1 + N2ǫ2 = (2N2 − N)ǫ.

(i) Evaluate canonical partition function Q(T, V,N). Do not forget the degeneracy

factor, Ω̂ which gives the number of ways we can organize N1 particles in state 1
and N2 particles in state 2.

(ii) Let q(T, V ) be the single-particle partition function. How Q(T, V,N) and q(t, V )
are related ?

(iii) Calculate and sketch heat capacity CV of the system.

9When ν = 1 and b = (1/2)mω2, we recover the results for simple harmonic oscillators : C = 3NkB.
This corresponds to the heat capacity of a crystalline solid having N atoms/molecules organized in a lattice.
We have C = 3NkB = 3nR or molar specific heat is c = 3R = 5.958 ≈ 6 Calories ⇒ Dulong-Petit’s law.
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Practice Problems : Lagrange Method of undetermined multiplier

4.3 Maximise A(x1, x2) = x1x2 under constraint x1 + x2 = 10.

4.4 Maximise f(x, y) = x3y5 under the constraint x + y = 8. (Answer: x = 3; y = 5.)

4.5 Let (x, y, x) be a point on the surface of a sphere x2+y2+z2 = 1. Let P = (2, 1,−2)
be a point. Let D(x, y, z) denote the distance between the point (x, y, z) on the sphere
and P . Employing Lagrange’s method of undetermined multiplier, find the maximum
and minimum value of D. (Answer: 4 and 2)

4.6 A rectangle is inscribed in an ellipse whose major and minor axes are of lengths a and b
respectively. The major axis is along the X axis and the minor axis is along the Y axis.
The centre of the ellipse is at the origin. The centre of the inscribed rectangle is also at
origin. Find the length and breath of the rectangle with largest possible area. Employ
the method of Lagrange multiplier. If you have a circle of radius R with centre at origin
instead of ellipse what would be the length and breath of the inscribed rectangle with
largest possible area ?

4.7 Consider a right circular cylinder of volume 2π cubic meter. Employing the method
of Lagrange multiplier find out what height and radius will provide the minimum total
surface area for the cylinder ?

4.8 Consider the distribution

Ω̂(n1, n2, n3, n4, n5, n6) =
N !

∏6

i=1
ni !

where n1 is the number of ”ones”, n2 is the number of ”Twos” etc. in a toss of N
independent fair dice. Let n⋆

i denote the value of ni, for which Ω̂(n1, n2, · · · , n6) is
maximum under the constraint

6∑

i=1

ni = N .

(i) Employing Lagrange’s method of undetermined multiplier, find n⋆
i : i = 1, 2, · · · , 6.

(ii) Let 〈ni〉 denote the average of ni. Show that n⋆
i = 〈ni〉 : i = 1, 2, · · · , 6.

4.9 Boltzmann -Gibbs-Shannon entropy is given by

S(p1, p2, · · · ) = −kB

∑

i

pi ln pi,

where pi is the probability of the micro state (indexed by i) of a closed system. Employing
the method of Lagrange undetermined multiplier,

(i) find {pi : i = 1, 2, · · · } for an isolated system by maximising the entropy under
a single constraint :

∑
i pi = 1

(ii) find {pi : i = 1, 2, · · · } for a closed system by maximising the entropy under two
constraints

(a)
∑

i pi = 1 and

(b)
∑

i piǫi = U where U is the thermodynamic internal energy.
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5.1 Consider a system of two non-interacting particles in thermal equilibrium at temperature
T = 1/[kBβ]. Each of the particles can occupy any of the three quantum states. The
energies of the quantum states are : −ǫ, 0 and + ǫ. Obtain canonical partition
function of the system for particles obeying

(i) classical statistics10 and are distinguishable

(ii) Maxwell-Boltzmann statistics11 and are ‘indistinguishable ’ .

For each of the above two cases calculate average energy of the system.

5.2 A zipper has N links. Each link can be in any one of the two states

(a) a closed state with zero energy

(b) an open state with energy ǫ > 0.

The zipper can be unzipped from top to bottom. A link can be open if and only if all the
links above it are also open. In other words, if we number the links as 1, 2, · · · , N
from top to bottom, then link k can be open if and only if all the links from 1 to k − 1
are also open.

(i) Derive an expression for the canonical partition function

(ii) Let n denote the number of open links. Derive an expression for the average number,
〈n〉 of open links. Employ canonical ensemble for carrying out the averaging process.

(iii) Show that at low temperatures (kBT << 1), the average 〈n〉 is independent of
N .

5.3 The expression for the average energy in statistical mechanics which corresponds to ther-
modynamic internal energy is given by

〈E〉 = U = −∂ ln Q

∂β

Show that for an ideal gas the energy is given by

〈E〉 = U = 3N
kBT

2
10do not divide by N !
11divide by N !

9



consistent with equi-partition theorem which says that each degree of freedom (each
quadratic term in the Hamiltonian) carries an energy of kBT/2.

5.4 Consider a closed system of 3N non-interacting, identical, distinguishable, quantum os-
cillators. The system is in thermal equilibrium at temperature T .

Consider three cases :

• Case - 1 :

the energy levels of a single oscillator is given by

ǫn =

(
n +

1

2

)
~ω0 ; n = 0, 1, 2, · · · .

(i) Derive an expression for the canonical partition function.

(ii) derive an expression for the internal energy U(T )

(iii) Obtain U(T ) in the classical limit : kBT >> ~ω. Show that we recover the
results of classical harmonic oscillator : U = NkBT , CV = NkB .

(iv) Derive an expression for entropy; obtain entropy in the classical limit

• Case - 2 : ”Even-harmonic oscillators” :

the energy levels of the oscillator are given by

ǫn =

(
n +

1

2

)
~ω0 ; n = 0, 2, 4, · · · .

Note n is zero or an even number.

(i) Derive an expression for the canonical partition function.

(ii) derive an expression for the internal energy U(T )

(iii) Obtain U(T ) in the classical limit : kBT >> ~ω. Show that we recover the
results of classical harmonic oscillator : U = NkBT , CV = NkB .

(iv) Derive an expression for entropy. Obtain S in the classical limit and show the
results are consistent what you have obtained in case-1.

• Case - 3 : ”Odd-harmonic oscillators” :

the energy levels of the oscillator are given by

ǫn =

(
n +

1

2

)
~ω0 ; n = 1, 3, 5, · · · .

Note n is an odd number.

(i) Derive an expression for the canonical partition function.

(ii) derive an expression for the internal energy U(T )

(iii) Obtain U(T ) in the classical limit : kBT >> ~ω. Show that we recover the
results of classical harmonic oscillator : U = NkBT , CV = NkB .

(iv) Derive an expression for entropy. Obtain S in the classical limit and show the
results are consistent what you have obtained in case-1.
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6.1 We saw that the parameter ρΛ3 helps us to find when quantum effects come into play
toward determining the properties of an ideal gas. We have,

ρ =
N

V
; Λ =

h
√
2πmkBT

ρ is the number density and Λ is the thermal / quantum wave length12.

ρ−1 = N/V is the effective volume available per molecule. Therefore ρ−1/3 is a mea-
sure of the average distance between two molecules. Λ is a measure of the de Broglie
wavelength associated with a particle having energy kBT . If ρ−1 >> Λ3, we can ignore
quantum effects. This is equivalent to saying that if ρΛ3 << 1 we can ignore quantum
effects. When ρΛ3 >> 1 quantum effects come into play. Set ρΛ3 = 1 and derive
an expression for the temperature. Let T = T ⋆ denote the temperature. Calculate the
value of T ⋆ for the following cases : 1. Hydrogen gas, 2. liquid Helium, and 3 electrons
in metals.

DATA

System density ρ mass m

Hydrogen 2 × 1025 per cubic meter 1.008 amu

Liquid Helium 2 × 1028 per cubic meter 4.003 amu

electrons in metal 1028 per cubic meter 9.109 × 10−31 kg.

h 6.626 × 10−34 joule sec.

kB 1.389 × 10−23 joules per kelvin

1 amu 1.661 × 10−27 kg.

12check Λ has the dimension of length.
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6.2 See S. B. Cahn, G. D. Mahan, and B. E. Nadgorny,
A Guide to Physics Problems Part 2: Thermodynamics, Statistical Physics, and Quantum

Mechanics,
Plenum ((1997) problem No. 4.45 page 24

Consider a system composed of a very large number N of distinguishable particles at rest.
The particles do not interact with each other. Each particle has only two non-degenerate
energy levels: 0 and ǫ > 0. Let E denote the total energy of the system. Note that
E is a random variable; it varies, in general, from one micro state of the system to the
other. Let ξ = E/N denote energy per particle.

(a) Assume that the system is not necessarily in thermal equilibrium. What is the
maximum possible value of ξ ?

(b) Let the system be in thermal equilibrium at temperature T . The canonical ensemble
average of E is the the thermodynamic energy, denoted by U . i.e. U = 〈E〉, where
〈·〉 denote an average over a canonical ensemble13. Let ζ = U/N denote the
(thermodynamic, equilibrium) energy per particle. Derive an expression for ζ as a
function of temperature.

(c) Find the value of ζ in the limit T → 0 and in the limit T → ∞.

(d) What is the maximum possible value that ζ can take ?

6.3 A closed system having three non-degenerate levels of energies −ǫ0, 0, and +ǫ0 is at
temperature T .

(i) Let βǫ0 = 2. The probability of finding the system in the level of energy 0 is

(a)
1

2
cosh 2 (b)

1

cosh 2

(c)
1

2 cosh 2
(d)

1

1 + 2 cosh 2

(ii) Let βǫ0 = x. In the limit T → ∞, the (Helmholtz) free energy of the system is

(a) −NkBTx2 (b) −NkBT

[
ln 2 +

x2

2

]

(c) −NkBT

[
ln 3 +

x2

3

]
(d) −NkBT ln 3

13Note that it is meaningful to call U as thermodynamic energy only when the average of energy is calculated
for N → ∞; only in this limit the average energy will be unchanging with time. Fluctuations around the
average value, defined as the standard deviation (i.e. square-root of the variance) of energy divided by the

mean energy will be of the order of 1/
√
N ; this goes to zero only in the limit of N → ∞.

12
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7.1 A thermodynamic system obeys the following fundamental equation,

S = NkB ln

[
1

v0kBT0

UV

N2

]

where kB, v0, T0 are constants.

(i) Derive an expression for the micro canonical temperature T (U,V,N), and pres-
sure14 P (U,V,N).

(ii) Derive an expression for Helmholtz free energy15 F (T, V,N)

(iii) Derive an expression for Gibbs free energy16.

7.2 A system has

(i) a non-degenerate ground state of zero energy

(ii) a non-degenerate excited state of energy 100kB joules

(iii) a doubly-degenerate excited state of energy 300kB joules

The Boltzmann constant kB equals 1.3807 × 10−23.

Calculate the relative fluctuations of energy given by η = σE/〈E〉, at = 200 kelvin.
Note : σ2

E = 〈E2〉 − 〈E〉2. The angular brackets denote averaging over a canonical
ensemble. Some useful relations :

〈E〉 = −
1

Q

∂Q

∂β
and 〈E2〉 =

1

Q

∂2Q

∂β2
or σ2

E =
∂

∂β

[
1

Q

∂Q

∂β

]

14

(
∂S

∂U

)

V,N

=
1

T
;

(
∂S

∂V

)

U,N

=
P

T
15Express U as a function of S, V, and N . Carry out Legendre transform : S → T and U → F . (i) Take

the partial derivative of U with respect to S and get T as a function of S, V, and N . (ii) Invert and get S as
a function of T, V, and N . Also get U as a function of T, V, and N . (iii) F = U −TS, wherein eliminate U ,
and S in favour of T, V and N .

16Legendre transform : S → T , V → P and U → G. G(T, P,N) = U − TS + PV

13



7.3 R K Pathria, Statistical Mechanics, Second Edition, Butterworth and Henemann (1996)
page 102, Problem 4.4

Show that the probability that an open system has N particles is given by

P (N) =
exp(βµN)Q(T,V,N)

Q(T, V, µ)

For a classical indistinguishable ideal gas, show that P (N) is a Poisson distribution.

Let σ2
N denote the variance N . Show that,

σ2

N = kBT

(
∂〈N〉
∂µ

)

T,V

where 〈N〉 is the average number of particles in the open system : averaging is carried
out over a grand canonical ensemble.

7.4 Avjit Lahiri, Statistical Mechanics : An Elementary Outline, Revised Edition, Universities
Press (2008)p.136;Problems 3-4

A system has two energy levels, one of zero energy and degeneracy g0. and the other of
ǫ energy and degeneracy g1. Show that

(i) the entropy of the system is given by

S =
g1ǫ exp(−βǫ)

T [g0 + g1 exp(−βǫ)]
+ kB ln[g0 + g1 exp(−βǫ)]

(ii) the heat capacity is given by, C =
g0g1ǫ

2 exp(−βǫ)

kBT 2[g0 + g1 exp(−βǫ)]2
.

(iii) at low temperatures, C ∼ T−2 exp(−ǫ/[kBT ])

(iv) at high temperatures C ∼ T−2.

7.5 Donald McQuarrie, Statistical Mechanics, Harper and Row (1976)page 65, Problem 3-4

Consider an open system described by a grand canonical ensemble. Show that the pressure
of an open system is given by

P = kBT

(
∂ lnQ
∂V

)

µ,V

.

Euler Theorem : If f(x, y) is a homogeneous function of first order, then

f(x, y) = x
∂f

∂x
+ y

∂f

∂y
.

Employ Euler theorem and show that

P =
kBT

V
lnQ(T, V, µ)

14
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8.1 We have,

− S

kB

=
∑

i

pi ln(pi).

The micro states are labelled by {i : i = 1, 2, · · · } and {pi : i = 1, 2, · · · } are
the corresponding probabilities. In the above the right hand side can be interpreted as
〈ln(p)〉. Consider a closed system for which

pi =
1

Q
exp(−βǫi),

where {ǫi : i = 1, 2, · · · } are the energies of the microstates and

Q =
∑

i

exp(−βǫi)

is the canonical partition function. Show that

− S

kB

= −βU − lnQ,

where U = 〈E〉 =
∑

i piǫi. From the above deduce that F = −kBT lnQ.

8.2 R. K Pathria, Statistical Mechanics, Second Edition, Butterworth-Heinemann (1996)
page : 85; Problem : 3.18

Show that for a closed system described by a canonical ensemble,

〈 (E − 〈E〉)3 = k2

B

[
T 4

(
∂CV

∂T

)

V

+ 2T 3CV

]
.

Verify the following relation for ideal gas.

〈E2〉 − 〈E〉2
〈E〉2

=
2

3N

〈(E − 〈E〉)3〉
〈E〉3

=
8

9N2

15



8.3 Let 〈N〉 denote the average number of particles in an open system. Show that

〈N〉 = λ
1

Q(T, V, µ)

∂Q
∂λ

,

In the above λ is the fugacity. λ = exp(βµ), where µ is the chemical potential17 :
energy change per addition of a particle at constant entropy and volume. Q(T, V, µ) is
the grand canonical partition function.

8.4 Let P (N) denote the probability that there are N particles in an open system at tem-
perature T and chemical potential µ. Show that

P (N) =
ζN exp(−ζ)

N !
,

where

ζ = 〈N〉 =

∞∑

N=0

N P (N).

8.5 Donald A McQuarrie, Statistical Mechanics, Harper and Row (1976)
page : 67; Problem : 3-22.

Show that the fluctuations of energy in a grand canonical ensemble is

σ2

E = kBT
2CV +

(
∂〈E〉
∂〈N〉

)

T,V

σ2

N

8.6 Start with Helmholtz free energy F (T, V,N). We have

F (T, λV, λN) = λF (T, V,N).

Show that Euler’s theorem implies that F = µN − PV . From these considerations
derive Gibbs-Duhem relation,

dµ = vdP − sdT,

where v = V/N is the specific volume and s = S/N is the specific entropy.

8.7 Starting with Gibbs’ free energy G(T, P,N) and the fact that G is a first order homo-
geneous function of N , derive Gibbs’-Duhem relation.

8.8 Employing the grand canonical ensemble formalism, show that the fluctuations in the
number of particles, σ2

N = 〈N2〉− 〈N〉2, in an open system is related to the isothermal
compressibility κT , as given below.

σ2

N =
〈N〉2kBT

V
κT ,

where,

κT = − 1

V

(
∂V

∂P

)

T

.

17µ =

(
∂U

∂N

)

S,V

or µ = −T

(
∂S

∂N

)

U,V

16
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9.1 Consider a closed system of THREE non-interacting particles at temperature T occu-
pying

• a non-degenerate ground state of energy zero and

• a three-fold degenerate excited state of energy ǫ.

� Derive expressions for the canonical partition function when the particles obey,

(i) classical statistics - particles are distinguishable18

(ii) Maxwell Boltzmann statistics - particles are indistinguishable19

(iii) Bose-Einstein statistics, and

(iv) Fermi-Dirac statistics.

HINT : Explicitly enumerate all possible strings of occupation numbers

{n1, n2, n3, n4}

for the four quantum states
{1, 2, 3, 4}

with energies
{ǫ1 = 0, ǫ2 = ǫ, ǫ3 = ǫ, ǫ4 = ǫ}

with the constraint
n1 + n2 + n3 + n4 = 3

. Keep track of the degeneracy factor Ω - the ’number’ of micro states for each string.

Ω = 1 for Bose-Einstein and Fermi-Dirac statistics;

Ω =
3!

∏4

i=1
ni!

for classical statistics and

Ω =
1

∏4

i=1
ni!

(which is not an integer for several strings!) for Maxwell-Boltzmann statistics.

� For each statistics, calculate the average energy.

18do not divide by N !
19in the sense meant by Boltzmann. Divide by N ! - as suggested by Boltzmann, to correct for the over

counting of micro states. This is called Boltzmann counting.

17



9.2 R. K. Pathria, Statistical Mechanics, Second Edition, Butterworth-Heinemann (1996) Page : 152; Prob-

lem : 6.1; Donald A McQuarrie, Statistical Mechanics Harper and Row (1976) Page : 78; Problem :

4-8

Show that the entropy of ideal quantum particles can be expressed as

S =





−kB

∑

i

[
〈ni〉 ln〈ni〉 + (1 + 〈ni〉) ln(1 + 〈ni〉)

]
for bosons

−kB

∑

i

[
〈ni〉 ln〈ni〉 + (1 − 〈ni〉) ln(1 − 〈ni〉)

]
for fermions

HINT : Let pi,n denote the probability that the i th quantum state holds n particles. The entropy is
given by

S = −kB

∑

i

∑

n

pi,n ln(pi,n).

The distribution pi,n for a given i is

binomial for fermions and

geometric for bosons.

These are single parameter distributions with the parameter given by ζi = 〈ni〉 =
∑

n npi,n.

9.3 Consider an open system of non-interacting particles occupying single particle quantum
states labelled by i = 1, 2, · · · . Let P (n) denote the probability that there are n
particles in quantum state k. The probability that there is no particle in state k is given
to be 0.001; in other words, P (n = 0) = 0.001 What is the average number of particles
in the state k if the particles obey

(i) Maxwell-Boltzmann statistics,

(ii) Bose-Einstein statistics,

(iii) Fermi-Dirac statistics.

HINT : Consider the distribution of n under the three statistics. It is Poisson for Maxwell-Boltzmann

statistics; geometric for bosons; and binomial for fermions. Each is a single parameter distribution.

You can conveniently take that parameter as ζ = 〈nk〉. Evaluate ζ employing the data given namely

P (n = 0) = 0.001

9.4 Show that the grand canonical partition function for Fermions is given by

Q(T, V, µ) =
∏

i

[1 + exp {−β (ǫi − µ)}]

Let f(ǫi) = 〈ni〉, where ni is the number of Fermions in quantum state i. The energy of
the quantum state i is ǫi. The angular bracket denotes an average over a grand canonical
ensemble of micro states. Consider energy to be a continuous variable and denote it by
ǫ. Show that

f(ǫ) =
1

exp [β (ǫ− µ)] + 1

(i) Sketch the function the Fermi function f at zero temperature.

(ii) Show that the Fermi function has the following symmetry :

f(ǫ = µ + ξ) = 1 − f(ǫ = µ − ξ).

18
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10.1 Show analytically

I1 =

∞∑

N=0

∑

{n1,n2}

⋆
xn1

1
xn2

2
=

(
1

1 − x1

)(
1

1 − x2

)

where the superscript ⋆ indicates the restriction

n1 + n2 = N.

Thus I1 = I2 where,

I2 =

(
∞∑

n=0

xn
1

)
×
(

∞∑

n=0

xn
2

)
=

(
1

1 − x1

)(
1

1 − x2

)

HINT :
∞∑

N=0

∑

{n1,n1}

⋆

xn1

1
xn2

2
=

∞∑

N=0

N∑

n=0

xn
1
xN−n
2 =

∞∑

N=0

xN+1
2 − xN+1

1

x2 − x1

= · · ·

10.2 Let the number of single-particle quantum states be four; these are labelled

1, 2, 3, 4.

Three non interacting quantum particles occupy these states. Let

(n1, n2, n3, n4)

denote a string of occupancy numbers of the four quantum states. Note the constraint

4∑

i=1

ni = 3.

Each string corresponds to a micro state of the three particle system. What are the
micro states if the particles are 1. bosons and 2. fermions. (Hint : there are four micro
states for fermions and twenty for bosons.). How many micro states are there for classical
distinguishable particles and how do you represent them ? How many micro states are
there for particles obeying Maxwell-Boltzmann statistics : and is your answer a whole
number ?
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10.3 E Atlee Jackson, Equilibrium Statistical Mechanics, Prentice Hall (1968) p.111; Problem.2

A simple system has five micro states with energies

−1, 0, 0, 0, +1 × 10−20 joules.

(a) Determine the probability that the system is in these different micro states when it
is at temperatures T = 200 kelvin, 400 kelvin.

(b) In each case what is the probability that the energy of the system is zero ?

(c) What is the relative chance of finding the system in a state with E = −1× 10−20

joules compared to the chance of finding the system in a state with E = +1×10−20

joules ?

(d) Set up a general expression for the relative probability of finding the system in a
state with E = E1 and with E = E2 in terms of β and the canonical partition
function Q.

10.4 E Atlee Jackson, Equilibrium Statistical Mechanics, Prentice Hall (1968) p.112; Problem.4

System-1 has micro states of energies

{ǫk : k = 1, 2, · · · }.

Its internal energy is denoted by the symbol U . Consider system-2 with micro states with
energies

ǫ′k = ǫk + ǫ,

where ǫ is a constant. LetU ′ be the internal energy of system-2. Find the relation between
U and U ′. What is the physical significance of the change in the internal energy.

10.5 Show that for bosons

ρΛ3 =
Λ3

V

λ

1 − λ
+ g3/2(λ) (1)

where the number density ρ = N/V , the thermal wavelength

Λ =
h

√
2πmkBT

,

λ = exp(βµ) is the fugacity (µ is chemical potential), and

g3/3(λ) =
∞∑

k=1

λk

k3/2
.

Show that for particles obeying Maxwell-Boltzmann statistics

ρΛ3 = λ. (2)

Show that in the classical limit of ρΛ3 → 0 the equation (??) for bosons reduces to the
equation (??) for particles obeying Maxwell-Boltzmann statistics.
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