PARTICLE PHYSICS Phy 523
SOLUTIONS Midsemester -III
Attempt all questions; All questions carry equal marks.
April 9th 2009

1. (a) Assuming ν_{μ} 's are left handed, what will be the helicity of μ^{+} emited in π^{+}decay $\pi^{+} \rightarrow \mu^{+}+\nu_{\mu}$ (in the rest frame of π)? (b) Write down the reaction of μ^{-}decay to electron and neutrinos. Let the μ^{-}be polarised along the positive z-axis and all the particles be emitted along the z - axis, with the electron moving along the negative z - axis and the neutrinos along the positive axis $z-$ axis. Find the helicity of the electron. for this configuration.

Solution:
(a) π is a spin zero particle. and thus the spin of the final state must be zero. The two emitted particles μ^{+}and ν_{μ} are emitted in opposite directions. Let ν_{μ} be travel along $z-$ axis. Then μ will travel along $-z$ direction. Since the helicity of ν_{μ} is negative its spin will be along $-z$ axis. Therefore the spin direction of μ^{+}is along z-direction and it's helicity is negative.
(b) $\mu^{-} \rightarrow e^{-}+\bar{\nu}_{e}+\nu_{\mu}$. The sum of the spins along the z- axis of the neutrinoes add to zero (ν_{μ} has negative helicity and $\bar{\nu}_{e}$ has positive helcity.) Thus the direction of spin of the elctron must be the same as that of the muon and is so the electron has spin along z and its helicity is negative.
2. Consider the lagrangian density for a complex scalar field $\Phi(x)$ given by

$$
L(x)=\left(D^{\mu} \Phi\right)^{\dagger}(x) D_{\mu} \Phi(x)-\mu^{2} \Phi^{\dagger}(x) \Phi(x)-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}
$$

where $D^{\mu} \Phi(x)=\left(\partial^{\mu}+i e A^{\mu}\right) \Phi(x)$ and $F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}$, A^{μ} being the photon field. Show that the lagrangian density is invaraint under a transformation $\Phi^{\prime}(x)=e^{i \alpha(x)} \Phi(x)$ provided A_{μ} is transformed appropriately. Find the transformation for A_{μ} under the above gauge transformatio

Solution:

$$
D_{\mu} \Phi(x)=\left(\partial_{\mu}+i e A_{\mu}\right) \Phi(x)
$$

Under a gauge transformation theis becomes

$$
\begin{gathered}
\left(\partial_{\mu}+i e A_{\mu}^{\prime}\right) \Phi^{\prime}(x)=\left(\partial_{\mu}+i e A_{\mu}^{\prime}\right) e^{i \alpha(x)} \Phi(x) \\
\left.=\left(e^{i \alpha(x)} \partial_{\mu} \Phi(x)+i \partial_{\mu} \alpha(x) e^{i \alpha(x)} \Phi(x)+i e A_{\mu}^{\prime}\right) e^{i \alpha(x)} \Phi(x)\right)
\end{gathered}
$$

Thus if $\left.i e A_{\mu}^{\prime}(x)+i \partial_{\mu} \alpha(x)=i e A_{\mu}\right)(x)$ the above equation becomes

$$
\left(\partial_{\mu}+i e A_{\mu}^{\prime}\right) \Phi^{\prime}(x)=e^{i \alpha(x)}\left(\partial_{\mu}+i e A_{\mu}\right) \Phi(x)
$$

We also have

$$
\begin{gathered}
\left(\left(\partial_{\mu}+i e A_{\mu}^{\prime}\right) \Phi^{\prime}(x)\right)^{\dagger}=\left(\left(D^{\mu} \Phi\right)^{\dagger}(x)\right)^{\prime} \\
=\left(\left(D^{\mu} \Phi\right)^{\dagger}(x)\right) e^{-i \alpha(x)}
\end{gathered}
$$

thus the first term in the Langrangian becomes

$$
\left.\left(D^{\mu} \Phi\right)^{\dagger}(x) D_{\mu} \Phi(x)^{\prime}=D^{\mu} \Phi\right)^{\dagger}(x) D_{\mu} \Phi(x)
$$

showing that this term is invariant. The term

$$
\mu^{2} \Phi^{\prime \dagger}(x) \Phi^{\prime}(x)=\mu^{2} \Phi^{\dagger}(x) e^{-i \alpha(x)} e^{i \alpha(x)} \Phi(x)=\mu^{2} \Phi^{\dagger}(x) \Phi(x)
$$

showing its invariance. The last term is $-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}$ where $F^{\mu \nu}=\partial_{\mu} A_{\nu}-$ $\partial_{n} u A_{\mu}$.So

$$
\begin{gathered}
F^{\prime \mu \nu}=\partial_{\mu} A_{\nu}^{\prime}-\partial_{n} u A_{\mu}^{\prime} \\
=\partial_{\mu}\left(A_{\nu}(x)-\frac{1}{e} \partial_{\nu} \alpha(x)\right)-\partial_{\nu}\left(A_{\mu}(x)-\frac{1}{e} \partial_{\mu} \alpha(x)\right) \\
=\partial_{\mu} A_{\nu}(x)-\partial_{\nu} A_{\mu}(x)=F_{\mu \nu}(x)
\end{gathered}
$$

Showing all the terms in the Langrangian are invariant. The transformation of $A_{\mu}(x)$ is given by

$$
A_{\mu}^{\prime}=a_{m} u(x)-\frac{1}{e} \partial_{\nu} \alpha(x)
$$

3. Suppose we had a scalar doublet Δ in the standard model

$$
\Delta=\binom{\delta^{++}}{\delta^{+}}
$$

What is the value of Y for the doublet?
Write down the covariant derivative for this doublet using $W_{\mu}^{a} \tau^{a}=W_{\mu}^{a} \sigma^{a} / 2$ and B_{μ} as gauge fields with coupling g, g^{\prime} respectively. Introducing the photon field A_{μ} and the Z-boson field Z_{μ}, defined by

$$
W_{\mu}^{3}=\frac{g^{\prime} A_{\mu}+g Z_{\mu}}{\left(g^{2}+g^{\prime 2}\right)^{1 / 2}}, B_{\mu}=\frac{g A_{\mu}-g^{\prime} Z_{\mu}}{\left(g^{2}+g^{\prime 2}\right)^{1 / 2}}
$$

show that the coupling to photon is to the charge of the particle with $e=$ $g g^{\prime} /\left(g^{2}+g^{\prime 2}\right)^{1 / 2}$.

We know $D_{\mu}=\partial_{\mu}-i g W_{\mu}^{a} \sigma^{a} / 2-i g^{\prime} Y B_{\mu}$ In the case of Δ we have $T=1 / 2$ and $Y=3 / 2$ Thus the covariant derivative for the doublet is

$$
D_{\mu} \Delta=\left(\partial_{\mu}-i g W_{\mu}^{a} \frac{\sigma^{a}}{2}-\frac{3 i g^{\prime}}{2} B_{\mu}\right) \Delta
$$

Consider

$$
\begin{gathered}
g W_{\mu}^{3} T^{3}+g^{\prime} Y B_{\mu}=g \frac{g^{\prime} A_{\mu}+g Z_{\mu}}{\left(g^{2}+g^{\prime 2}\right)^{1 / 2}} T^{3}+g^{\prime} Y \frac{g A_{\mu}-g^{\prime} Z_{\mu}}{\left(g^{2}+g^{\prime 2}\right)^{1 / 2}} \\
=\frac{g g^{\prime}}{\left(g^{2}+g^{\prime 2}\right)^{1 / 2}}\left(T^{3}+Y\right) A_{\mu}+\frac{g^{2} T^{3}-g^{\prime 2} Y}{\left(g^{2}+g^{\prime 2}\right)^{1 / 2}} Z_{\mu}
\end{gathered}
$$

Using $Q=T^{3}+Y$ we get for the coupling of the electromagnetic field

$$
\frac{g g^{\prime}}{\left(g^{2}+g^{\prime 2}\right)^{1 / 2}} Q A_{\mu}=e Q A_{\mu}
$$

where

$$
e=\frac{g g^{\prime}}{\left(g^{2}+g^{\prime 2}\right)^{1 / 2}}
$$

is the elctric charge.

