Phy 523
PARTICLE PHYSICS
Problem sheet V
10th February 2009
17th February 2009
21. Consider the state $\mid \vec{P}=0 ; \vec{n}>$ for a spin one particle with spin along a unit three vector \vec{n}, i.e. $\vec{S} \cdot \vec{n}|\vec{P}=0 ; \vec{n}>=| \vec{P}=0 ; \vec{n}>$. (\vec{S} is the spin operator) If the wave function for the particle is represented by the four vector $X_{\mu}(x)$ find the components of the vector field (Palne wave solution in the frame in which $\vec{P}=0$). If P is the parity operator what is $P \mid \vec{P}=0 ; \vec{n}>$ if the particle is (a) $J^{P}=1^{-}$and (b) $J^{P}=1^{+}$?
22. Consider the decay of $\Lambda^{0}\left(J^{P}=1 / 2^{+}\right) \rightarrow p+\pi^{-}$whose matrix element is given by

$$
\begin{aligned}
& <p, \vec{P}_{p} ; \pi, \vec{P}_{\pi}|M| \Lambda^{0}, \vec{P}_{\Lambda}> \\
& =\bar{u}\left(P_{p}\right)\left(A+B \gamma_{5}\right) u\left(P_{\Lambda}\right)
\end{aligned}
$$

. where A and B are functions of masses of the three particles.
Show that a term like $\bar{u}\left(P_{p}\right)\left(C \gamma_{\nu} P^{\nu}{ }_{\pi}\right) u\left(P_{\Lambda}\right)$ and $\bar{u}\left(P_{p}\right)\left(D \gamma_{5} \gamma_{\nu} P_{\pi}^{\nu}\right) u\left(P_{\Lambda}\right)$ can be converted to terms of the form A and B .
$u\left(P_{\Lambda}\right)$ obeys $\left(\gamma_{\nu} P_{\Lambda}^{\nu}-m_{\Lambda}\right) u\left(P_{\Lambda}\right)=0$ and a similar equation for the proton spinor.
23. Calulate the decay rate for $\Lambda^{0} \rightarrow p+\pi^{-}$where we sum over the final spins of the proton and average over the initial spin of Λ^{0}. (Use the expression given in Problem 22.)
24. Is parity conserved in this reaction (Problem 23)? If so why? If not why?
25. From the momentum dependence (in terms of \vec{P}_{π}) of decay rate calculated in problem 23, what can conclude about the angular momentum of the outgoing particles?

