QFT Solved Problem Dyson Expansion Second Order Term

A. K. Kapoor kapoor.proofs@gmail.com akkhcu@gmail.com

August 16, 2016

Abstract

The n^{th} order term, in the perturbation series for time evolution operator in the interaction picture, can be written in a symmetric fashion as $1/n! \times$ a time ordered product. This comes by suitable by manipulating the multiple integral as demonstrated for the second order term.

Problem 1: Prove that

$$\int_{t_0}^T dt_1 \int_{t_0}^{t_1} dt_2 H_I'(t_1) H_I'(t_2) = \frac{1}{2} \int_{t_0}^T dt_1 \int_{t_0}^T dt_2 T \left(H_I'(t_1) H_I'(t_2) \right)$$
(1)

Solution Consider the right and side

$$\int_{0}^{T} dt_{1} \int_{0}^{T} dt_{2} T \left(H(t_{1}) H(t_{2}) \right)$$
(2)

We split
$$\int_0^T dt_2 \longrightarrow \int_0^{t_1} dt_2 + \int_{t_1}^T dt_2$$
 (3)

$$= \int_{0}^{T} dt_{1} \int_{0}^{t_{1}} dt_{2} T \Big(H(t_{1}) H(t_{2}) \Big) + \int_{0}^{T} dt_{1} \int_{t_{1}}^{T} dt_{2} T \Big(H(t_{1}) H(t_{2}) \Big)$$
(4)

$$= \int_{0}^{T} dt_{1} \int_{0}^{t_{1}} dt_{2} \left(H(t_{1})H(t_{2}) \right) + \int_{0}^{t} dt_{1} \int_{t_{1}}^{T} dt_{2} \left(H(t_{2})H(t_{1}) \right).$$
(5)

We have removed the time ordering operator and explicitly written the product with correct ordering. In the second term we reverse the order of integration from $\iint dt_1 dt_2 \rightarrow \iint dt_2 dt_1$. For this purpose it should be noted that the second integral is over the half of the square OAB in the (t_1, t_2) plane as shown in Fig. 1(a) below.

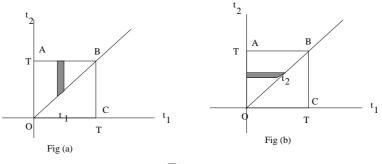


Fig. **1**

In Fig 1(a) the upper rectangle OAB is covered by fixing t_2 in the range taking $0 < t_2 < T$ and varying t_1 in the range $t_1 < t_1 < T$. In Fig 1(b) the same area OAB is covered by interchanging the order. Thus we first choose t_2 in the range $0 < t_2 < T$ and vary t_1 in the range $0 < t_1 < t_2$. Thus we have the following rule for change of order of integration.

$$\int_{0}^{T} dt_{1} \int_{t_{1}}^{T} dt_{2} \to \int_{0}^{T} dt_{2} \int_{0}^{t_{2}} dt_{1}$$
(6)

Using this rule to interchange the order of integration in (8), we get

$$\int_{0}^{T} dt_{1} \int_{0}^{t} dt_{2} T \Big(H(t_{1}) H(t_{2}) \Big)$$
(7)

$$= \int_{0}^{T} dt_{1} \int_{0}^{t_{1}} dt_{2} \left(H(t_{1})H(t_{2}) \right) + \int_{0}^{T} dt_{1} \int_{0}^{T} dt_{2} \left(H(t_{2})H(t_{1}) \right).$$
(8)

$$= \int_0^T dt_1 \int_0^{t_1} dt_2 \left(H(t_1)H(t_2) \right) + \int_0^T dt_2 \int_0^{t_2} dt_1 \left(H(t_2)H(t_1) \right).$$
(9)

We now exchange the labels of integration variables $(t_1 \rightarrow t_2)$ in the last term to get

$$\int_{0}^{T} dt_{1} \int_{0}^{t} dt_{2} T \Big(H(t_{1}) H(t_{2}) \Big) = 2 \int_{0}^{T} dt_{1} \int_{0}^{t_{1}} dt_{2} \Big(H(t_{1}) H(t_{2}) \Big)$$
(10)

which proves the desired result.

FileName:KApoor:///qft-que-14001:sol.pdf Created: Jul 28, 2016 Location: http://0space.org/node/1384

License: Creative Commons	
No Warranty, implied or otherwise	
Click for More http://Ospace.org/node/138	4
Printed August 16, 2016	