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Abstract

The nth order term, in the perturbation series for time evolution operator in the
interaction picture, can be written in a symmetric fashion as 1/n!× a time ordered
product. This comes by suitable by manipulating the multiple integral as demon-
strated for the second order term.
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Solution Consider the right and side
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We split
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We have removed the time ordering operator and explicitly written the product with

correct ordering. In the second term we reverse the order of integration from
s

dt1dt2 →s
dt2dt1. For this purpose it should be noted that the second integral is over the half of

the square OAB in the (t1, t2) plane as shown in Fig. 1(a) below.
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Fig. 1

In Fig 1(a) the upper rectangle OAB is covered by fixing t2 in the range taking 0 < t2 < T

and varying t1 in the range t1 < t1 < T . In Fig 1(b) the same area OAB is covered by

interchanging the order. Thus we first choose t2 in the range 0 < t2 < T and vary t1 in

the range 0 < t1 < t2. Thus we have the following rule for change of order of integration.
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Using this rule to interchange the order of integration in (8), we get
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We now exchange the labels of integration variables (t1 → t2) in the last term to get
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which proves the desired result.
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