Prove that the free particle solutions $f_{q}(x)$ obey the orthononality relations

$$
i \int d^{3} x f_{q}^{*}(x) \overleftrightarrow{\partial}_{0} f_{p}(x)=2 \omega_{q} \delta(\vec{q}-\vec{p})
$$

and find the value of $\int d^{3} x f_{q}(x) \overleftrightarrow{\partial}_{0} f_{p}(x)$
[21 (a) Lagrangian density for a charged free keen Cordon field is

$$
\begin{aligned}
& L(x)=\partial_{M} \phi(x) \partial^{M} \phi^{*}(x)-m^{2} \phi(x) \phi^{*}(x) \text {, where } \\
& m=\text { mass of the charged free Rein Pardon (spa n20) }
\end{aligned}
$$ particle.

[2] (6) Nee burow, free particle solutions of Kein-Codon equation is

$$
\operatorname{tq}(x)=\frac{1}{(2 \pi)^{3 / 2}} e^{-i q x}
$$

and $\partial_{q}(x)=\frac{1}{(Q h)^{3 / 2}} e^{i q x}$

$$
\begin{aligned}
& \therefore i^{i} \int d^{3} x \partial_{q}^{10}(x) \stackrel{\partial}{0}^{\partial_{p}}(x) \\
& \therefore \frac{i^{i}}{(2 \pi)^{3}} \int d^{3} x e^{i q^{x}} \hat{\partial}_{0} e^{-i p x}
\end{aligned}
$$

$=\frac{i}{(2 \pi)^{3}} \int d^{3} x\left[e^{i q x} \frac{\partial e^{-i p x}}{\partial x_{i}^{i}}-\frac{\partial e^{i q x}}{\partial x_{i}^{i}} e^{-i p x}\right]$
$2 \frac{i}{(2 p)^{3}} \int d^{3} x\left[e^{i q x-i p x}\left(-i \omega_{p}\right)-\left(i \omega_{q}\right) e^{i q x-i p x}\right]$
$z-\frac{i^{2}}{(2 x)^{3}} \int d^{3} x\left(\omega_{p}+\omega_{q}\right) e^{i(q-p) x}=2 \quad 2 \omega_{q} \delta(\vec{q}-\vec{p})$ virere $\delta(\vec{q}-\vec{p})=\frac{1}{(2 n)^{3}} \int d^{3} x^{*} e^{i(q-p) x}-(i i n$
and the klin-Gordon equation is.

$$
\begin{align*}
& \left(\partial_{m} \partial m+m^{2}\right) \phi(x)=0 \tag{iv}\\
\Rightarrow & \left(\square+m^{2}\right) \phi(x)=0 \\
\therefore & i \int d^{3} x \partial_{q}^{*}(x) \stackrel{\text { cir }}{\partial_{0}} \partial_{p}(x)=2 \omega_{q} \delta(\underline{q}-\vec{p}) \text { [Proved] }
\end{align*}
$$

$$
\begin{aligned}
& \text { now } \int d^{4} x \partial_{q}(x) \leftrightarrows \partial_{0} \partial_{p}(x) \\
& =\int \frac{d^{4} x}{(2 \pi)^{3}}\left\{e^{-i q x} \partial_{0} e^{-i p x}\right\} \\
& =\int \frac{d^{4} x}{(2 \pi)^{3}}\left\{e^{-i q x} \frac{\partial e^{-i p x}}{\partial x^{0}}-\frac{\partial e^{-i q x}}{\partial x_{0}} e^{-i p x}\right\} \\
& =\int \frac{d^{4} x}{(2 \pi)^{3}}\left\{(-i p) e^{-i(q+p) x}-(-i q) e^{-i(p+q) x}\right\} \\
& =\int \frac{d^{4 x}}{(2 \pi)^{3}}-i\left\{\omega_{p}-\omega_{q}\right\} e^{-i(q+p) x} \\
& =-i \int d t \int \frac{a^{3} x}{(2 x)^{3}}\left(\omega_{p}-\omega_{q}\right) e^{-i(q+p) x} \\
& =-i \int d t \delta(q+p)\left(\omega_{p}-\omega_{q}\right) \\
& =\left\{\begin{array}{l}
\delta\left(\omega^{2}\right)
\end{array}\right. \\
& =\left\{\begin{array}{l}
-i\left(\omega_{p}-\omega_{q}\right), i f q \neq-p=?
\end{array}\right.
\end{aligned}
$$

Comments

- Integrals are over space variables only; $d^{4} x$ in the question was a typographical error and should be replaced with $d^{3} x$, a correction announced in the examination hall.
- In the 3 rd line from bottom on page 2 of the scanned answer, $\delta(p+q)$ should be $\delta^{3}(p+q)$ and $\int d t$ should not be there.
- The last two lines of the scanned answer should be replaced by since $\vec{q}=\vec{p}$, we have $\omega_{p}=\omega_{q}$ Hence the integral is zero

